The population of compact extragalactic sources contribute to the
non-Gaussianity at Cosmic Microwave Background frequencies. We study their
non-Gaussianity using publicly available full-sky simulations. We introduce a
parametrisation to visualise efficiently the bispectrum and we describe the
scale and frequency dependences of the bispectrum of radio and IR
point-sources. We show that the bispectrum is well fitted by an analytical
prescription. We find that the clustering of IR sources enhances their
non-Gaussianity by several orders of magnitude, and that their bispectrum peaks
in the squeezed triangles. Examining the impact of these sources on primordial
non-Gaussianity estimation, we find that radio sources yield an important
positive bias to local fNL at low frequencies but this bias is efficiently
reduced by masking detectable sources. IR sources produce a negative bias at
high frequencies, which is not dimmed by the masking, as their clustering is
dominated by faint sources.Comment: 4pages, 2 figures, 2 tables. Contribution to the proceedings of the
International Conference on Gravitation and Cosmology, Goa, December 201