44,478 research outputs found

    Giant enhanced optical nonlinearity of colloidal nanocrystals with a graded-index host

    Full text link
    The effective linear and third-order nonlinear optical properties of metallic colloidal crystal immersed in a graded-index host fluid are investigated theoretically. The local electric fields are extracted self-consistently based on the layer-to-layer interactions, which are readily given by the Lekner summation method. The resultant optical absorption and nonlinearity enhancement show a series of sharp peaks, which merge in a broadened resonant band. The sharp peaks become a continuous band for increasing packing density and number of layers. We believe that the sharp peaks arise from the in-plane dipolar interactions and the surface plasmon resonance, whereas the continuous band is due to the presence of the gradient in the host refractive index. These results have not been observed in homogeneous and randomly-dispersed colloids, and thus would be of great interest in optical nanomaterial engineering.Comment: Submitted to Applied Physics Letter

    Constraining supersymmetry from the satellite experiments

    Full text link
    In this paper we study the detectability of γ\gamma-rays from dark matter annihilation in the subhalos of the Milky Way by the satellite-based experiments, EGRET and GLAST. We work in the frame of supersymmetric extension of the standard model and assume the lightest neutralino being the dark matter particles. Based on the N-body simulation of the evolution of dark matter subhalos we first calculate the average intensity distribution of this new class of γ\gamma-ray sources by neutralino annihilation. It is possible to detect these γ\gamma-ray sources by EGRET and GLAST. Conversely, if these sources are not detected the nature of the dark matter particls will be constrained by these experiments, which, however, depending on the uncertainties of the subhalo profile.Comment: 19 pages, 5 gigures; references added, more discussions adde

    Has HyperCP Observed a Light Higgs Boson?

    Get PDF
    The HyperCP collaboration has observed three events for the decay Sigma^+ -> p mu^+ mu^- which may be interpreted as a new particle of mass 214.3 MeV. However, existing data from kaon and B-meson decays severely constrain this interpretation, and it is nontrivial to construct a model consistent with all the data. In this letter we show that the ``HyperCP particle'' can be identified with the light pseudoscalar Higgs boson in the next-to-minimal supersymmetric standard model, the A_1^0. In this model there are regions of parameter space where the A_1^0 can satisfy all the existing constraints from kaon and B-meson decays and mediate Sigma^+ -> p mu^+ mu^- at a level consistent with the HyperCP observation.Comment: 7 pages, 2 figure

    Electrical stimulation of visual cortex can immediately improve spatial vision

    Full text link
    Published in final edited form as:Curr Biol. 2016 July 25; 26(14): 1867–1872. doi:10.1016/j.cub.2016.05.019.SUMMARY We can improve human vision by correcting the optics of our lenses [1, 2, 3]. However, after the eye transduces the light, visual cortex has its own limitations that are challenging to correct [4]. Overcoming these limitations has typically involved innovative training regimes that improve vision across many days [5, 6]. In the present study, we wanted to determine whether it is possible to immediately improve the precision of spatial vision with noninvasive direct-current stimulation. Previous work suggested that visual processing could be modulated with such stimulation [7, 8, 9]. However, the short duration and variability of such effects made it seem unlikely that spatial vision could be improved for more than several minutes [7, 10]. Here we show that visual acuity in the parafoveal belt can be immediately improved by delivering noninvasive direct current to visual cortex. Twenty minutes of anodal stimulation improved subjects’ vernier acuity by approximately 15% and increased the amplitude of the earliest visually evoked potentials in lockstep with the behavioral effects. When we reversed the orientation of the electric field, we impaired resolution and reduced the amplitude of visually evoked potentials. Next, we found that anodal stimulation improved acuity enough to be measurable with the relatively coarse Snellen test and that subjects with the poorest acuity benefited the most from stimulation. Finally, we found that stimulation-induced acuity improvements were accompanied by changes in contrast sensitivity at high spatial frequencies.This work was supported by grants from the NIH (R01-EY019882, R01-EY025275, P30-EY08126, T32-EY007135, F31-MH102042). We thank the reviewers and Randolph Blake for helpful comments. We thank Kevin Dieter for technical assistance in designing the psychophysical procedure for experiment 5. Subjects gave informed written consent to procedures approved by the Vanderbilt University Institutional Review Board and were compensated at a rate of $10/hr for their time. (R01-EY019882 - NIH; R01-EY025275 - NIH; P30-EY08126 - NIH; T32-EY007135 - NIH; F31-MH102042 - NIH)Accepted manuscrip

    Density-functional investigation of rhombohedral stacks of graphene: topological surface states, nonlinear dielectric response, and bulk limit

    Full text link
    A DFT-based investigation of rhombohedral (ABC)-type graphene stacks in finite static electric fields is presented. Electronic band structures and field-induced charge densities are compared with related literature data as well as with own results on (AB) stacks. It is found, that the undoped AB-bilayer has a tiny Fermi line consisting of one electron pocket around the K-point and one hole pocket on the line K-Γ\Gamma. In contrast to (AB) stacks, the breaking of translational symmetry by the surface of finite (ABC) stacks produces a gap in the bulk-like states for slabs up to a yet unknown critical thickness Nsemimet≫10N^{\rm semimet} \gg 10, while ideal (ABC) bulk (β\beta-graphite) is a semi-metal. Unlike in (AB) stacks, the ground state of (ABC) stacks is shown to be topologically non-trivial in the absence of external electric field. Consequently, surface states crossing the Fermi level must unavoidably exist in the case of (ABC)-type stacking, which is not the case in (AB)-type stacks. These surface states in conjunction with the mentioned gap in the bulk-like states have two major implications. First, electronic transport parallel to the slab is confined to a surface region up to the critical layer number NsemimetN^{\rm semimet}. Related implications are expected for stacking domain walls and grain boundaries. Second, the electronic properties of (ABC) stacks are highly tunable by an external electric field. In particular, the dielectric response is found to be strongly nonlinear and can e.g. be used to discriminate slabs with different layer numbers. Thus, (ABC) stacks rather than (AB) stacks with more than two layers should be of potential interest for applications relying on the tunability by an electric field.Comment: 36 pages, 17 figure

    RIDGE SUBDUCTION IN THE HISTORY OF THE CENTRAL ASIAN OROGENIC BELT: EVIDENCE AND TECTONIC IMPLICATIONS FOR THE EVOLUTION OF AN ACCRETIONARY OROGEN

    Get PDF
    Cenozoic ridge subduction and the resultant slab windows have been well documented worldwide [Sisson et al., 2003], especially along the western margins of North and South America [Thorkelson, Taylor, 1989]. The principal characteristics of ridge subduction, which can be used to recognise the process in ancient orogens, include: intrusion of ridge-generated magmas into a forearc in a near-trench position [Marshak, Karig, 1977]; this can be regarded as the hallmark of ridge subduction.Cenozoic ridge subduction and the resultant slab windows have been well documented worldwide [Sisson et al., 2003], especially along the western margins of North and South America [Thorkelson, Taylor, 1989]. The principal characteristics of ridge subduction, which can be used to recognise the process in ancient orogens, include: intrusion of ridge-generated magmas into a forearc in a near-trench position [Marshak, Karig, 1977]; this can be regarded as the hallmark of ridge subduction
    • …
    corecore