15 research outputs found

    Urinary Excretion of Mimosine Derivatives by Cows with and without Experience in Consumption of \u3cem\u3eLeucaena leucocephala\u3c/em\u3e

    Get PDF
    Leucaena leucocephala is a leguminous tree widely distributed in the tropical regions of the world. In Mexico, it has been incorporated into silvopastoral systems and is highly regarded, owing to its high content of crude protein. Nonetheless, L. leucocephala contains secondary metab-olites, such as mimosine, a non-protein free amino acid, which may induce toxic effects in unadapted ruminants that consume the forage (Hammond 1995). Although Synergistes jonesii, an anaerobic bacterium, has the ability to degrade 3,4-DHP and 2,3-DHP to non-toxic compounds (Allison et al. 1992), in Mexico its presence has not yet been confirmed. Recent work has suggested the occurrence of sub-clinical toxicity to 3,4-DHP and 2,3-DHP in cattle grazing L. leucocephala in Australia and Thailand (Graham 2007; Dalzell et al. 2012; Phaikaew et al. 2012). Several options such as the transfer of rumen liquor and the adaptation of ruminants to the intake of L. leucocephala have been studied in an attempt to reduce the excretion of mimosine and its metabolites (Palmer et al. 2010). The aim of the present work was to evaluate the effect of the experience of consumption of L. leucocephala on excretion of mimosine derivatives (3,4-DHP and 2,3-DHP) in the urine of cattle

    Productive Performance of Growing Cattle Grazing a Silvopastoral System with \u3cem\u3eLeucaena leucocephala\u3c/em\u3e

    Get PDF
    In tropical regions, the feeding of cattle is usually based on the grazing of medium to low quality grasses. Low fertility of soils, changing climatic conditions and the poor management of pastures, have further reduced the quality and forage yield of pastures. The low availability and quality of grasses gives modest weight gains for grazing cattle and this in-turn causes low economical efficiency of cattle production systems (Campos et al. 2011). Silvopastoral systems represent a sustainable option for meat and milk production in the tropics. The association of grasses with legumes such as Leucaena leucocephala (leucaena) supply forage with high concentration of crude protein (Barros et al. 2012). There are reports in the scientific literature which show that intake of leucaena can result in good rates of growth in cattle (e.g. Shelton and Dalzell 2007); however the presence of the free amino acid mimosine and its metabolites (3,4-DHP and 2,3-DHP) in leucaena when the anaerobic bacteria Synergistes jonesii (Allison et al. 1992) is absent from the rumen, may induce subclinical toxicity in grazing ruminants (Graham 2007; Dalzell et al. 2012; Phaikaew et al. 2012). There are no reports in Mexico regarding the rate of growth of cattle grazing silvopastoral systems with leucaena. The aim of the present work was to evaluate the rate of growth of cattle grazing an association of Panicum maximum and leucaena compared to that of cattle fed a high grain ration (feedlot)

    Urinary Excretion of Mimosine Metabolites by Hair Sheep Fed Foliage of \u3cem\u3eLeucaena leucocephala\u3c/em\u3e

    Get PDF
    Leucaena leucocephala is an adapted legume widely distributed in the tropical regions of Mexico. The high crude protein content of leucaena leaves renders it appropriate for ruminant feeding under commercial conditions. However, the foliage contains the non-protein amino acid mimosine, which, if consumed in high amounts, may induce toxicity in animals which have not previously consumed the legume or without microorganisms capable of degrading mimosine and its derivatives 2,3-DHP (dihydroxypyridine) and 3,4-DHP (Hammond 1995, Palmer et al. 2010, Dalzell et al. 2012). Barros-Rodríguez et al. (2012) found that dry matter intake and weight gain were reduced when sheep grazed paddocks with 55,000 plants of leucaena per hectare. Early work in Australia led to the isolation of Synergistes jonesii, an anaerobic bacterium able to degrade 3,4-DHP and 2,3-DHP to non-toxic compounds (Allison et al. 1992). In Mexico, the presence of this microorganism in the rumen has not yet been confirmed. Inoculation of non-accustomed animals with rumen liquor of ruminants adapted to the consumption of leucaena can reduce the impact of mimosine and its metabolites on animal health (Ghosh et al. 2009; Palmer et al. 2010). The aim of the present work was to evaluate the effects of transferring rumen liquor of cows adapted to the consumption of L. leucocephala to sheep without experience of consumption, on urinary excretion of 3.4-DHP and 2.3-DHP by means of a colorimetric technique

    Review: Strategies for enteric methane mitigation in cattle fed tropical forages

    Get PDF
    Methane (CH4) is a greenhouse gas (GHG) produced and released by eructation to the atmosphere in large volumes by ruminants. Enteric CH4 contributes significantly to global GHG emissions arising from animal agriculture. It has been contended that tropical grasses produce higher emissions of enteric CH4 than temperate grasses, when they are fed to ruminants. A number of experiments have been performed in respiration chambers and head-boxes to assess the enteric CH4 mitigation potential of foliage and pods of tropical plants, as well as nitrates (NO3−) and vegetable oils in practical rations for cattle. On the basis of individual determinations of enteric CH4 carried out in respiration chambers, the average CH4 yield for cattle fed low-quality tropical grasses (>70% ration DM) was 17.0 g CH4/kg DM intake. Results showed that when foliage and ground pods of tropical trees and shrubs were incorporated in cattle rations, methane yield (g CH4/kg DM intake) was decreased by 10% to 25%, depending on plant species and level of intake of the ration. Incorporation of nitrates and vegetable oils in the ration decreased enteric CH4 yield by ∼6% to ∼20%, respectively. Condensed tannins, saponins and starch contained in foliages, pods and seeds of tropical trees and shrubs, as well as nitrates and vegetable oils, can be fed to cattle to mitigate enteric CH4 emissions under smallholder conditions. Strategies for enteric CH4 mitigation in cattle grazing low-quality tropical forages can effectively increase productivity while decreasing enteric CH4 emissions in absolute terms and per unit of product (e.g. meat, milk), thus reducing the contribution of ruminants to GHG emissions and therefore to climate change

    Preferencia del consumo de ensilajes de árboles nativos por venados cola blanca (Odocoileus virginianus) en cautiverio

    No full text
    The objective of this work was to evaluate the preference of silages native forage by Odocoileus virginianus. The study was carried out with nine adults deer males and females confined in three management wildlife production units in Yucatan, Mexico. Latin square design 3 x 3 was used to test the silages consumption and preference. White-tailed deer had higher preference by silages of Brosimum alicastrum than Leucaena leucocephala and both mixture at 50 % (p<0.01). There was a negative correlation between the amount of neutral detergent fiber and dry matter intake in metabolic weight (p=0.062).El objetivo de este trabajo fue evaluar la preferencia de ensilajes de forraje nativo por Odocoileus virginianus. El estudio se efectuó con nueve O. virginianus adultos machos y hembras, confinados en tres Unidades de manejo de vida silvestre en Yucatán, México. Se utilizó el diseño de cuadro latino 3 x 3 para probar el consumo y preferencia de ensilajes. Los venados cola blanca tuvieron mayor preferencia por ensilaje de Brosimum alicastrum que Leucaena leucocephala y la mezcla de ambos al 50 % (p<0,01). Hubo correlación negativa entre la cantidad de fibra detergente neutro y el consumo de materia seca en peso metabólico (p=0,062)

    Contribution of intensive silvopastoral systems to animal performance and to adaptation and mitigation of climate change

    No full text
    According to FAO, world demand for animal products will double in the first half of this century as a result of increasing population and economic growth. During the same period, major changes are expected in world climate. Food security remains one of the highest priority issues in developing Latin American countries, a region where livestock production plays a fundamental role. Agricultural activities seriously threaten natural resources; therefore, it is necessary to ensure that livestock production contributes to satisfy the demand for animal products in a sustainable manner. Intensive silvopastoral systems (ISS) are becoming the technology of choice for Colombian and regional livestock sectors because it can help reduce the seasonality of plants and animal production, and therefore contribute to mitigate and adapt to the effects of climate change. We have recently gained knowledge on the nutritional and productive attributes of these systems. However, in recent years, the low carbon approach acquired importance in animal agriculture, which seeks to primarily promote the adoption of programs running parallel activities aimed at adapting to and mitigating climate change. This review outlines projections on the effects of climate change on the livestock industry, presents concepts on Greenhouse Gas flow and highlights evidence in support of the conclusion that ISS is an interesting option to allow the livestock sector in the region to adapt to climate change and to mitigate some of its effects. The adoption of ISS may help to remove up to 26.6 tons of CO2 eq/Ha/yr from the atmosphere
    corecore