5,176 research outputs found
Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials
An ab initio theory for Fano resonances in plasmonic nanostructures and
metamaterials is developed using Feshbach formalism. It reveals the role played
by the electromagnetic modes and material losses in the system, and enables the
engineering of Fano resonances in arbitrary geometries. A general formula for
the asymmetric resonance in a non-conservative system is derived. The influence
of the electromagnetic interactions on the resonance line shape is discussed
and it is shown that intrinsic losses drive the resonance contrast, while its
width is mostly determined by the coupling strength between the non-radiative
mode and the continuum. The analytical model is in perfect agreement with
numerical simulations.Comment: 13 pages, 5 figure
Real-Time Description of the Electronic Dynamics for a Molecule close to a Plasmonic Nanoparticle
The optical properties of molecules close to plasmonic nanostructures greatly
differ from their isolated molecule counterparts. To theoretically investigate
such systems in a Quantum Chemistry perspective, one has to take into account
that the plasmonic nanostructure (e.g., a metal nanoparticle - NP) is often too
large to be treated atomistically. Therefore, a multiscale description, where
the molecule is treated by an ab initio approach and the metal NP by a lower
level description, is needed. Here we present an extension of one such
multiscale model [Corni, S.; Tomasi, J. {\it J. Chem. Phys.} {\bf 2001}, {\it
114}, 3739] originally inspired by the Polarizable Continuum Model, to a
real-time description of the electronic dynamics of the molecule and of the NP.
In particular, we adopt a Time-Dependent Configuration Interaction (TD CI)
approach for the molecule, the metal NP is described as a continuous dielectric
of complex shape characterized by a Drude-Lorentz dielectric function and the
molecule- NP electromagnetic coupling is treated by an equation-of-motion (EOM)
extension of the quasi-static Boundary Element Method (BEM). The model includes
the effects of both the mutual molecule- NP time-dependent polarization and the
modification of the probing electromagnetic field due to the plasmonic
resonances of the NP. Finally, such an approach is applied to the investigation
of the light absorption of a model chromophore, LiCN, in the presence of a
metal NP of complex shape.Comment: This is the final peer-reviewed manuscript accepted for publication
of an open access article published under an ACS AuthorChoice License, which
permits copying and redistribution of the article or any adaptations for
non-commercial purposes. Link to the original article:
http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b1108
Enhanced graphene nonlinear response through geometrical plasmon focusing
We propose a simple approach to couple light into graphene plasmons and focus these excitations at
focal spots of a size determined by the plasmon wavelength, thus producing high optical field
enhancement that boosts the nonlinear response of the material. More precisely, we consider a
graphene structure in which incident light is coupled to its plasmons at the carbon edges and
subsequently focused on a spot of size comparable to the plasmon wavelength. We observe large
confinement of graphene plasmons, materializing in small, intense focal spots, in which the
extraordinary nonlinear response of this material leads to relatively intense harmonic generation.
This result shows the potential of plasmon focusing in suitably edged graphene structures to produce
large field confinement and nonlinear response without involving elaborated nanostructuring.Peer ReviewedPostprint (published version
Spin Hall effect of light in photon tunneling
We resolve the breakdown of angular momentum conservation on two-dimensional
photon tunneling by considering spin Hall effect (SHE) of light. This
interesting effect manifests itself as polarization-dependent transverse shifts
for a classic wave packet tunneling through a prism-air-prism barrier. For a
certain circularly polarized component, the transverse shifts can be modulated
by altering the refractive index gradient associated with the two prisms. We
find that the SHE in conventional beam refraction can be evidently enhanced via
photon tunneling mechanism. The polarization-dependent transverse shift is
governed by the total angular momentum conservation law, while the
polarization-dependent angular shift is governed by the total linear momentum
law. These findings open the possibility for developing new nano-photonic
devices and can be extrapolated to other physical systems.Comment: 8 pages, 5 figure
Statistical properties of spontaneous emission near a rough surface
We study the lifetime of the excited state of an atom or molecule near a
plane surface with a given random surface roughness. In particular, we discuss
the impact of the scattering of surface modes within the rough surface. Our
study is completed by considering the lateral correlation length of the decay
rate and the variance discussing its relation to the C0 correlation
Universal oscillations in counting statistics
Noise is a result of stochastic processes that originate from quantum or
classical sources. Higher-order cumulants of the probability distribution
underlying the stochastic events are believed to contain details that
characterize the correlations within a given noise source and its interaction
with the environment, but they are often difficult to measure. Here we report
measurements of the transient cumulants > of the number n of passed
charges to very high orders (up to m=15) for electron transport through a
quantum dot. For large m, the cumulants display striking oscillations as
functions of measurement time with magnitudes that grow factorially with m.
Using mathematical properties of high-order derivatives in the complex plane we
show that the oscillations of the cumulants in fact constitute a universal
phenomenon, appearing as functions of almost any parameter, including time in
the transient regime. These ubiquitous oscillations and the factorial growth
are system-independent and our theory provides a unified interpretation of
previous theoretical studies of high-order cumulants as well as our new
experimental data.Comment: 19 pages, 4 figures, final version as published in PNA
Optical extinction in a single layer of nanorods
We demonstrate that almost 100 % of incident photons can interact with a
monolayer of scatterers in a symmetrical environment. Nearly-perfect optical
extinction through free-standing transparent nanorod arrays has been measured.
The sharp spectral opacity window, in the form of a characteristic Fano
resonance, arises from the coherent multiple scattering in the array. In
addition, we show that nanorods made of absorbing material exhibit a 25-fold
absorption enhancement per unit volume compared to unstructured thin film.
These results open new perspectives for light management in high-Q, low volume
dielectric nanostructures, with potential applications in optical systems,
spectroscopy, and optomechanics
- …