5,176 research outputs found

    Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials

    Get PDF
    An ab initio theory for Fano resonances in plasmonic nanostructures and metamaterials is developed using Feshbach formalism. It reveals the role played by the electromagnetic modes and material losses in the system, and enables the engineering of Fano resonances in arbitrary geometries. A general formula for the asymmetric resonance in a non-conservative system is derived. The influence of the electromagnetic interactions on the resonance line shape is discussed and it is shown that intrinsic losses drive the resonance contrast, while its width is mostly determined by the coupling strength between the non-radiative mode and the continuum. The analytical model is in perfect agreement with numerical simulations.Comment: 13 pages, 5 figure

    Real-Time Description of the Electronic Dynamics for a Molecule close to a Plasmonic Nanoparticle

    Full text link
    The optical properties of molecules close to plasmonic nanostructures greatly differ from their isolated molecule counterparts. To theoretically investigate such systems in a Quantum Chemistry perspective, one has to take into account that the plasmonic nanostructure (e.g., a metal nanoparticle - NP) is often too large to be treated atomistically. Therefore, a multiscale description, where the molecule is treated by an ab initio approach and the metal NP by a lower level description, is needed. Here we present an extension of one such multiscale model [Corni, S.; Tomasi, J. {\it J. Chem. Phys.} {\bf 2001}, {\it 114}, 3739] originally inspired by the Polarizable Continuum Model, to a real-time description of the electronic dynamics of the molecule and of the NP. In particular, we adopt a Time-Dependent Configuration Interaction (TD CI) approach for the molecule, the metal NP is described as a continuous dielectric of complex shape characterized by a Drude-Lorentz dielectric function and the molecule- NP electromagnetic coupling is treated by an equation-of-motion (EOM) extension of the quasi-static Boundary Element Method (BEM). The model includes the effects of both the mutual molecule- NP time-dependent polarization and the modification of the probing electromagnetic field due to the plasmonic resonances of the NP. Finally, such an approach is applied to the investigation of the light absorption of a model chromophore, LiCN, in the presence of a metal NP of complex shape.Comment: This is the final peer-reviewed manuscript accepted for publication of an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Link to the original article: http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b1108

    Enhanced graphene nonlinear response through geometrical plasmon focusing

    Get PDF
    We propose a simple approach to couple light into graphene plasmons and focus these excitations at focal spots of a size determined by the plasmon wavelength, thus producing high optical field enhancement that boosts the nonlinear response of the material. More precisely, we consider a graphene structure in which incident light is coupled to its plasmons at the carbon edges and subsequently focused on a spot of size comparable to the plasmon wavelength. We observe large confinement of graphene plasmons, materializing in small, intense focal spots, in which the extraordinary nonlinear response of this material leads to relatively intense harmonic generation. This result shows the potential of plasmon focusing in suitably edged graphene structures to produce large field confinement and nonlinear response without involving elaborated nanostructuring.Peer ReviewedPostprint (published version

    Spin Hall effect of light in photon tunneling

    Full text link
    We resolve the breakdown of angular momentum conservation on two-dimensional photon tunneling by considering spin Hall effect (SHE) of light. This interesting effect manifests itself as polarization-dependent transverse shifts for a classic wave packet tunneling through a prism-air-prism barrier. For a certain circularly polarized component, the transverse shifts can be modulated by altering the refractive index gradient associated with the two prisms. We find that the SHE in conventional beam refraction can be evidently enhanced via photon tunneling mechanism. The polarization-dependent transverse shift is governed by the total angular momentum conservation law, while the polarization-dependent angular shift is governed by the total linear momentum law. These findings open the possibility for developing new nano-photonic devices and can be extrapolated to other physical systems.Comment: 8 pages, 5 figure

    Notes and Comments

    Get PDF

    Notes and Comments

    Get PDF

    Statistical properties of spontaneous emission near a rough surface

    Full text link
    We study the lifetime of the excited state of an atom or molecule near a plane surface with a given random surface roughness. In particular, we discuss the impact of the scattering of surface modes within the rough surface. Our study is completed by considering the lateral correlation length of the decay rate and the variance discussing its relation to the C0 correlation

    Universal oscillations in counting statistics

    Full text link
    Noise is a result of stochastic processes that originate from quantum or classical sources. Higher-order cumulants of the probability distribution underlying the stochastic events are believed to contain details that characterize the correlations within a given noise source and its interaction with the environment, but they are often difficult to measure. Here we report measurements of the transient cumulants > of the number n of passed charges to very high orders (up to m=15) for electron transport through a quantum dot. For large m, the cumulants display striking oscillations as functions of measurement time with magnitudes that grow factorially with m. Using mathematical properties of high-order derivatives in the complex plane we show that the oscillations of the cumulants in fact constitute a universal phenomenon, appearing as functions of almost any parameter, including time in the transient regime. These ubiquitous oscillations and the factorial growth are system-independent and our theory provides a unified interpretation of previous theoretical studies of high-order cumulants as well as our new experimental data.Comment: 19 pages, 4 figures, final version as published in PNA

    Optical extinction in a single layer of nanorods

    Full text link
    We demonstrate that almost 100 % of incident photons can interact with a monolayer of scatterers in a symmetrical environment. Nearly-perfect optical extinction through free-standing transparent nanorod arrays has been measured. The sharp spectral opacity window, in the form of a characteristic Fano resonance, arises from the coherent multiple scattering in the array. In addition, we show that nanorods made of absorbing material exhibit a 25-fold absorption enhancement per unit volume compared to unstructured thin film. These results open new perspectives for light management in high-Q, low volume dielectric nanostructures, with potential applications in optical systems, spectroscopy, and optomechanics
    • …
    corecore