20 research outputs found

    High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K

    Full text link
    We investigate the operation of WSi superconducting nanowire single-photon detectors (SNSPDs) at 2.5 K, a temperature which is ~ 70 % of the superconducting transition temperature (TC) of 3.4 K. We demonstrate saturation of the system detection efficiency at 78 +- 2 % with a jitter of 191 ps. We find that the jitter at 2.5 K is limited by the noise of the readout, and can be improved through the use of cryogenic amplifiers. Operation of SNSPDs with high efficiency at temperatures very close to TC appears to be a unique property of amorphous WSi

    High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films

    Full text link
    We demonstrate high-efficiency superconducting nanowire single-photon detectors (SNSPDs) fabricated from MoSi thin-films. We measure a maximum system detection efficiency (SDE) of 87 +- 0.5 % at 1542 nm at a temperature of 0.7 K, with a jitter of 76 ps, maximum count rate approaching 10 MHz, and polarization dependence as low as 3.4 +- 0.7 % The SDE curves show saturation of the internal efficiency similar to WSi-based SNSPDs at temperatures as high as 2.3 K. We show that at similar cryogenic temperatures, MoSi SNSPDs achieve efficiencies comparable to WSi-based SNSPDs with nearly a factor of two reduction in jitter

    Quasiparticle recombination in hotspots in superconducting current-carrying nanowires

    Get PDF
    We describe a kinetic model of recombination of nonequilibrium quasiparticles generated by single photon absorption in superconducting current-carrying nanowires. The model is developed to interpret two-photon detection experiments in which a single photon does not possess sufficient energy for breaking superconductivity at a fixed low bias current. We show that quasiparticle self-recombination in relaxing hotspots dominates diffusion expansion effects and explains the observed strong bias current, wavelength, and temperature dependencies of hotspot relaxation in tungsten silicide superconducting nanowire single-photon detectors

    Hotspot relaxation dynamics in a current-carrying superconductor

    Get PDF
    We experimentally studied the dynamics of optically excited hotspots in current-carrying WSi superconducting nanowires as a function of bias current, bath temperature, and excitation wavelength. We observed that the hotspot relaxation time depends on bias current, temperature, and wavelength. We explained this effect with a model based on quasiparticle recombination, which provides insight into the quasiparticle dynamics of superconductors. © 2016 American Physical Society

    Hotspot dynamics in current carrying WSi superconducting nanowires

    No full text
    We measured the temporal dynamics of optically excited hotspots in current-carrying WSi superconducting nanowires as a function of bias current, temperature and excitation wavelength, observing an unexpected effect: hotspot relaxation depends strongly on bias current
    corecore