214 research outputs found

    Solvable Markovian dynamics of lattice quantum spin models

    Full text link
    We address the real-time dynamics of lattice quantum spin models coupled to single or multiple Markovian dissipative reservoirs using the method of closed hierarchies of correlation functions. This approach allows us to solve a number of quantum spin models exactly in arbitrary dimensions, which is illustrated explicitly with two examples of driven-dissipative systems. We investigate their respective nonequilibrium steady states as well as the full real-time evolution on unprecedented system sizes. Characteristic time scales are derived analytically, which allows us to understand the nontrivial finite-size scaling of the dissipative gap. The corresponding scaling exponents are confirmed by solving numerically for the full real-time evolution of two-point correlation functions.Comment: 6 pages, 2 figures; version accepted for publication in PR

    Early quark production and approach to chemical equilibrium

    Get PDF
    We perform real-time lattice simulations of out-of-equilibrium quark production in non-Abelian gauge theory in 3+1-dimensions. Our simulations include the backreaction of quarks onto the dynamical gluon sector, which is particularly relevant for strongly correlated quarks. We observe fast isotropization and universal behavior of quarks and gluons at weak coupling and establish a quantitative connection to previous pure glue results. In order to understand the strongly correlated regime, we perform simulations for a large number of flavors and compare them to those obtained with two light quark flavors. By doing this we are able to provide estimates of the chemical equilibration time

    Schwinger pair production with ultracold atoms

    Get PDF
    We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron-positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose-Einstein condensates interacting with fermionic atoms. The calculations based on functional integral techniques give a unique access to the physical parameters required to realize the QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states rather than single atoms for quantum simulations of high-energy particle physics phenomena.Comment: 5 pages, 4 figures, PLB versio

    Implementing quantum electrodynamics with ultracold atomic systems

    Get PDF
    We discuss the experimental engineering of model systems for the description of QED in one spatial dimension via a mixture of bosonic 23^{23}Na and fermionic 6^6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system's parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable

    Momentum Spectra for Dynamically Assisted Schwinger Pair Production

    Full text link
    Recently the dynamically assisted Schwinger mechanism, i.e., electron-positron pair production from vacuum by a combination of laser pulses with different time scales has been proposed. The corresponding results, which suggest that the rate of produced pairs is significantly enhanced by dynamical effects, are verified. Employing the framework of quantum kinetic theory intrinsically enables us to additionally provide momentum space information on the generated positron spectrum.Comment: 6 pages, 7 figure

    Quantum simulation of lattice gauge theories using Wilson fermions

    Full text link
    Quantum simulators have the exciting prospect of giving access to real-time dynamics of lattice gauge theories, in particular in regimes that are difficult to compute on classical computers. Future progress towards scalable quantum simulation of lattice gauge theories, however, hinges crucially on the efficient use of experimental resources. As we argue in this work, due to the fundamental non-uniqueness of discretizing the relativistic Dirac Hamiltonian, the lattice representation of gauge theories allows for an optimization that up to now has been left unexplored. We exemplify our discussion with lattice quantum electrodynamics in two-dimensional space-time, where we show that the formulation through Wilson fermions provides several advantages over the previously considered staggered fermions. Notably, it enables a strongly simplified optical lattice setup and it reduces the number of degrees of freedom required to simulate dynamical gauge fields. Exploiting the optimal representation, we propose an experiment based on a mixture of ultracold atoms trapped in a tilted optical lattice. Using numerical benchmark simulations, we demonstrate that a state-of-the-art quantum simulator may access the Schwinger mechanism and map out its non-perturbative onset.Comment: 19 pages, 11 figure

    Pair Production Beyond the Schwinger Formula in Time-Dependent Electric Fields

    Full text link
    We investigate electron-positron pair production in pulse-shaped electric background fields using a non-Markovian quantum kinetic equation. We identify a pulse-length range for subcritical fields still in the nonperturbative regime where the number of produced pairs significantly exceeds that of a naive expectation based on the Schwinger formula. From a conceptual viewpoint, we find a remarkable quantitative agreement between the (real-time) quantum kinetic approach and the (imaginary-time) effective action approach.Comment: 5 pages, 3 figures. Typos corrected and references added, PRD Versio

    Molecular and immunological characterization of profilin from mugwort pollen

    Get PDF
    In late summer in Europe, pollen of mugwort is one of the major sources of atopic allergens. No information about the complete molecular structure of any mugwort allergen has been published so far. Here we report the isolation and characterization of mugwort pollen cDNA clones coding for two isoforms of the panallergen profilin. Thirtysix percent of the mugwort allergic patients tested displayed IgE antibodies against natural and recombinant profilin, and no significant differences were observed in the IgEbinding properties of the isoforms. One profilin isoform was purified to homogeneity and detailed structural analysis indicated that the protein exists in solution as dimers and tetramers stabilized by sulfydryl and/or ionic interactions. Profilin monomers were detectable only after exposure of multimers to harsh denaturing conditions. Dimers and tetramers did not significantly differ in their ability to bind serum IgE from mugwort pollenallergic patients. However, oligomeric forms might have a higher allergenic potential than monomers because larger molecules would have additional epitopes for IgEmediated histamine release. Profilin isolated from mugwort pollen also formed multimers. Thus, oligomerization is not an artifact resulting from the recombinant production of the allergen. Inhibition experiments showed extensive IgE crossreactivity of recombinant mugwort profilin and profilin from various pollen and food extracts

    Dynamically assisted Schwinger mechanism

    Full text link
    We study electron-positron pair creation {from} the Dirac vacuum induced by a strong and slowly varying electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic field (dynamical pair creation). In the sub-critical regime where both mechanisms separately are strongly suppressed, their combined impact yields a pair creation rate which is {dramatically} enhanced. Intuitively speaking, the strong electric field lowers the threshold for dynamical particle creation -- or, alternatively, the fast electromagnetic field generates additional seeds for the Schwinger mechanism. These findings could be relevant for planned ultra-high intensity lasers.Comment: 4 pages, 2 figure

    Momentum signatures for Schwinger pair production in short laser pulses with a sub-cycle structure

    Full text link
    We investigate electron-positron pair production from vacuum for short laser pulses with sub-cycle structure, in the nonperturbative regime (Schwinger pair production). We use the non-equilibrium quantum kinetic approach, and show that the momentum spectrum of the created electron-positron pairs is extremely sensitive to the sub-cycle dynamics -- depending on the laser frequency ω\omega, the pulse length τ\tau, and the carrier phase ϕ\phi -- and shows several distinctive new signatures. This observation could help not only in the design of laser pulses to optimize the experimental signature of Schwinger pair production, but also ultimately lead to new probes of light pulses at extremely short time scales.Comment: 4 pages, 5 figures. Revised version: Minor changes and typos corrected. PRL Versio
    • …
    corecore