174 research outputs found
Dysfunction of the cochlea contributing to hearing loss in acoustic neuromas: an underappreciated entity
There is significant degeneration of cochlear structures in ears with VS. Cochlear dysfunction may be an important contributor to the hearing loss caused by VS and can explain certain clinically observed phenomena in patients with VS
Role of Culex and Anopheles mosquito species as potential vectors of rift valley fever virus in Sudan outbreak, 2007
<p>Abstract</p> <p>Background</p> <p>Rift Valley fever (RVF) is an acute febrile arthropod-borne viral disease of man and animals caused by a member of the <it>Phlebovirus </it>genus, one of the five genera in the family <it>Bunyaviridae</it>. RVF virus (RVFV) is transmitted between animals and human by mosquitoes, particularly those belonging to the <it>Culex, Anopheles </it>and <it>Aedes </it>genera.</p> <p>Methods</p> <p>Experiments were designed during RVF outbreak, 2007 in Sudan to provide an answer about many raised questions about the estimated role of vector in RVFV epidemiology. During this study, adult and immature mosquito species were collected from Khartoum and White Nile states, identified and species abundance was calculated. All samples were frozen individually for further virus detection. Total RNA was extracted from individual insects and RVF virus was detected from <it>Culex, Anopheles </it>and <it>Aedes </it>species using RT-PCR. In addition, data were collected about human cases up to November 24<sup>th</sup>, 2007 to asses the situation of the disease in affected states. Furthermore, a historical background of the RVF outbreaks was discussed in relation to global climatic anomalies and incriminated vector species.</p> <p>Results</p> <p>A total of 978 mosquitoes, belonging to 3 genera and 7 species, were collected during Sudan outbreak, 2007. <it>Anopheles gambiae arabiensis </it>was the most frequent species (80.7%) in White Nile state. Meanwhile, <it>Cx. pipiens </it>complex was the most abundant species (91.2%) in Khartoum state. RT-PCR was used and successfully amplified 551 bp within the M segment of the tripartite negative-sense single stranded RNA genome of RVFV. The virus was detected in female, male and larval stages of <it>Culex </it>and <it>Anopheles </it>species. The most affected human age interval was 15-29 years old followed by ≥ 45 years old, 30-44 years old, and then 5-14 years old. Regarding to the profession, housewives followed by farmers, students, shepherd, workers and the free were more vulnerable to the infection. Furthermore, connection between human and entomological studies results in important human case-vulnerability relatedness findings.</p> <p>Conclusion</p> <p>Model performance, integrated with epidemiologic and environmental surveillance systems should be assessed systematically for RVF and other mosquito-borne diseases using historical epidemiologic and satellite monitoring data. Case management related interventions; health education and vector control efforts are extremely effective in preparedness for viral hemorrhagic fever and other seasonal outbreaks.</p
Pitfalls in the diagnosis of acoustic neuroma
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71894/1/j.1365-2273.1984.tb01490.x.pd
A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America
Rift Valley fever is a vector-borne zoonotic disease which causes high
morbidity and mortality in livestock. In the event Rift Valley fever virus is
introduced to the United States or other non-endemic areas, understanding the
potential patterns of spread and the areas at risk based on disease vectors and
hosts will be vital for developing mitigation strategies. Presented here is a
general network-based mathematical model of Rift Valley fever. Given a lack of
empirical data on disease vector species and their vector competence, this
discrete time epidemic model uses stochastic parameters following several PERT
distributions to model the dynamic interactions between hosts and likely North
American mosquito vectors in dispersed geographic areas. Spatial effects and
climate factors are also addressed in the model. The model is applied to a
large directed asymmetric network of 3,621 nodes based on actual farms to
examine a hypothetical introduction to some counties of Texas, an important
ranching area in the United States of America (U.S.A.). The nodes of the
networks represent livestock farms, livestock markets, and feedlots, and the
links represent cattle movements and mosquito diffusion between different
nodes. Cattle and mosquito (Aedes and Culex) populations are treated with
different contact networks to assess virus propagation. Rift Valley fever virus
spread is assessed under various initial infection conditions (infected
mosquito eggs, adults or cattle). A surprising trend is fewer initial
infectious organisms result in a longer delay before a larger and more
prolonged outbreak. The delay is likely caused by a lack of herd immunity while
the infections expands geographically before becoming an epidemic involving
many dispersed farms and animals almost simultaneously
Integration of decision support systems to improve decision support performance
Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes
DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors
<p>Abstract</p> <p>Background</p> <p>Mosquitoes belonging to the Albitarsis Group (<it>Anopheles</it>: <it>Nyssorhynchus</it>) are of importance as malaria vectors across the Neotropics. The Group currently comprises six known species, and recent studies have indicated further hidden biodiversity within the Group. DNA barcoding has been proposed as a highly useful tool for species recognition, although its discriminatory utility has not been verified in closely related taxa across a wide geographic distribution.</p> <p>Methods</p> <p>DNA barcodes (658 bp of the mtDNA <it>Cytochrome c Oxidase </it>- <it>COI</it>) were generated for 565 <it>An. albitarsis </it>s.l. collected in Argentina, Brazil, Colombia, Paraguay, Trinidad and Venezuela over the past twenty years, including specimens from type series and type localities. Here we test the utility of currently advocated barcoding methodologies, including the Kimura-two-parameter distance model (K2P) and Neighbor-joining analysis (NJ), for determining species delineation within mosquitoes of the Neotropical Albitarsis Group of malaria vectors (<it>Anopheles</it>: <it>Nyssorhynchus</it>), and compare results with Bayesian analysis.</p> <p>Results</p> <p>Species delineation through barcoding analysis and Bayesian phylogenetic analysis, fully concur. Analysis of 565 sequences (302 unique haplotypes) resolved nine NJ tree clusters, with less than 2% intra-node variation. Mean intra-specific variation (K2P) was 0.009 (range 0.002 - 0.014), whereas mean inter-specific divergence were several-fold higher at 0.041 (0.020 - 0.056), supporting the reported "barcoding gap". These results show full support for separate species status of the six known species in the Albitarsis Group (<it>An. albitarsis </it>s.s., <it>An. albitarsis </it>F, <it>An. deaneorum</it>, <it>An. janconnae</it>, <it>An. marajoara </it>and <it>An. oryzalimnetes</it>), and also support species level status for two previously detected lineages - <it>An. albitarsis </it>G &<it>An. albitarsis </it>I (designated herein). In addition, we highlight the presence of a unique mitochondrial lineage close to <it>An. deaneorum </it>and <it>An. marajoara </it>(<it>An. albitarsis </it>H) from Rondônia and Mato Grosso in southwestern Brazil. Further integrated studies are required to confirm the status of this lineage.</p> <p>Conclusions</p> <p>DNA barcoding provides a reliable means of identifying both known and undiscovered biodiversity within the closely related taxa of the Albitarsis Group. We advocate its usage in future studies to elucidate the vector competence and respective distributions of all eight species in the Albitarsis Group and the novel mitochondrial lineage (<it>An. albitarsis </it>H) recovered in this study.</p
- …