287 research outputs found
Supersymmetry in carbon nanotubes in a transverse magnetic field
Electron properties of Carbon nanotubes in a transverse magnetic field are
studied using a model of a massless Dirac particle on a cylinder. The problem
possesses supersymmetry which protects low energy states and ensures stability
of the metallic behavior in arbitrarily large fields. In metallic tubes we find
suppression of the Fermi velocity at half-filling and enhancement of the
density of states. In semiconducting tubes the energy gap is suppressed. These
features qualitatively persist (although to a smaller degree) in the presence
of electron interactions. The possibilities of experimental observation of
these effects are discussed.Comment: A new section on electron interaction effects added and explanation
on roles of supersymmetry expanded. Revtex4, 6 EPS figure file
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems
A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud
\u
Ambidexterity for corporate social performance
The literature on corporate social performance advocates that firms address social issues based on instrumental as well as moral rationales. While both rationales trigger initiatives to increase corporate social performance, these rest on fundamentally different and contradicting foundations. Building on the literature on organizational ambidexterity and paradox in management, we propose in this conceptual article that ambidexterity represents an important determinant of corporate social performance. We explain how firms achieve higher levels of corporate social performance through the ambidextrous ability to simultaneously pursue instrumentally and morally driven social initiatives. We distinguish between a balance dimension and a combined dimension of ambidexterity, which both enhance corporate social performance through distinct mechanisms. With the balance dimension, instrumental and moral initiatives compensate for each other â which increases the scope of corporate social performance. With the combined dimension, instrumental and moral initiatives supplement each other â which increases the scale of corporate social performance. The article identifies the most important determinants and moderators of the balance and the combined dimension to explain the conditions under which we expect firms to increase corporate social performance through ambidexterity. By focusing on the interplay and tensions between different types of social initiatives, an ambidextrous perspective contributes to a better understanding of corporate social performance. Regarding managerial practice, we highlight the role of structural and behavioral factors for achieving higher corporate social performance through the simultaneous pursuit of instrumental and moral initiatives
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
A Hypothesis for the Evolution of Nuclear-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase Genes in âChromalveolateâ Members
Eukaryotes bearing red alga-derived plastids â photosynthetic alveolates (dinoflagellates plus the apicomplexan Toxoplasma gondii plus the chromerid Chromera velia), photosynthetic stramenopiles, haptophytes, and cryptophytes â possess unique plastid-targeted glyceraldehyde-3-phosphate dehydrogenases (henceforth designated as âGapC1â). Pioneering phylogenetic studies have indicated a single origin of the GapC1 enzymes in eukaryotic evolution, but there are two potential idiosyncrasies in the GapC1 phylogeny: Firstly, the GapC1 tree topology is apparently inconsistent with the organismal relationship among the âGapC1-containingâ groups. Secondly, four stramenopile GapC1 homologues are consistently paraphyletic in previously published studies, although these organisms have been widely accepted as monophyletic. For a closer examination of the above issues, in this study GapC1 gene sampling was improved by determining/identifying nine stramenopile and two cryptophyte genes. Phylogenetic analyses of our GapC1 dataset, which is particularly rich in the stramenopile homologues, prompt us to propose a new scenario that assumes multiple, lateral GapC1 gene transfer events to explain the incongruity between the GapC1 phylogeny and the organismal relationships amongst the âGapC1-containingâ groups. Under our new scenario, GapC1 genes uniquely found in photosynthetic alveolates, photosynthetic stramenopiles, haptophytes, and cryptopyhytes are not necessarily a character vertically inherited from a common ancestor
Association of polygenic score and the involvement of cholinergic and glutamatergic pathways with lithium treatment response in patients with bipolar disorder
Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithiumâs possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response â defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P < 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 Ă 10â12, R2 = 1.9%) and continuous (P = 6.4 Ă 10â9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22â5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 Ă 10â4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment
- âŠ