1,441 research outputs found
Crossover Behavior in Burst Avalanches of Fiber Bundles: Signature of Imminent Failure
Bundles of many fibers, with statistically distributed thresholds for
breakdown of individual fibers and where the load carried by a bursting fiber
is equally distributed among the surviving members, are considered. During the
breakdown process, avalanches consisting of simultaneous rupture of several
fibers occur, with a distribution D(Delta) of the magnitude Delta of such
avalanches. We show that there is, for certain threshold distributions, a
crossover behavior of D(Delta) between two power laws D(Delta) proportional to
Delta^(-xi), with xi=3/2 or xi=5/2. The latter is known to be the generic
behavior, and we give the condition for which the D(Delta) proportional to
Delta^(-3/2) behavior is seen. This crossover is a signal of imminent
catastrophic failure in the fiber bundle. We find the same crossover behavior
in the fuse model.Comment: 4 pages, 4 figure
The resonance spectrum of the cusp map in the space of analytic functions
We prove that the Frobenius--Perron operator of the cusp map
, (which is an approximation of the
Poincar\'e section of the Lorenz attractor) has no analytic eigenfunctions
corresponding to eigenvalues different from 0 and 1. We also prove that for any
the spectrum of in the Hardy space in the disk
\{z\in\C:|z-q|<1+q\} is the union of the segment and some finite or
countably infinite set of isolated eigenvalues of finite multiplicity.Comment: Submitted to JMP; The description of the spectrum in some Hardy
spaces is adde
Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection
A novel class of coherent nonlinear optical phenomena, involving induced
transparency in quantum wells, is considered in the context of a particular
application to sensitive long-wavelength infrared detection. It is shown that
the strongest decoherence mechanisms can be suppressed or mitigated, resulting
in substantial enhancement of nonlinear optical effects in semiconductor
quantum wells.Comment: 4 pages, 3 figures, replaced with revised versio
Optical control and entanglement of atomic Schroedinger fields
We develop a fully quantized model of a Bose-Einstein condensate driven by a
far off-resonant pump laser which interacts with a single mode of an optical
ring cavity. In the linear regime, the cavity mode exhibits spontaneous
exponential gain correlated with the appearance of two atomic field side-modes.
These side-modes and the cavity field are generated in a highly entangled
state, characterized by thermal intensity fluctuations in the individual modes,
but with two-mode correlation functions which violate certain classical
inequalities. By injecting an initial coherent field into the optical cavity
one can significantly decrease the intensity fluctuations at the expense of
reducing the correlations, thus allowing for optical control over the quantum
statistical properties of matter waves.Comment: 4 page
New results for virial coefficients of hard spheres in D dimensions
We present new results for the virial coefficients B_k with k <= 10 for hard
spheres in dimensions D=2,...,8.Comment: 10 pages, 5 figures, to appear in conference proceedings of STATPHYS
2004 in Pramana - Journal of Physic
Crackling dynamics in material failure as the signature of a self-organized dynamic phase transition
We derive here a linear elastic stochastic description for slow crack growth
in heterogeneous materials. This approach succeeds in reproducing
quantitatively the intermittent crackling dynamics observed recently during the
slow propagation of a crack along a weak heterogeneous plane of a transparent
Plexiglas block [M{\aa}l{\o}y {\it et al.}, PRL {\bf 96} 045501]. In this
description, the quasi-static failure of heterogeneous media appears as a
self-organized critical phase transition. As such, it exhibits universal and to
some extent predictable scaling laws, analogue to that of other systems like
for example magnetization noise in ferromagnets
Burst avalanches in solvable models of fibrous materials
We review limiting models for fracture in bundles of fibers, with
statistically distributed thresholds for breakdown of individual fibers. During
the breakdown process, avalanches consisting of simultaneous rupture of several
fibers occur, and the distribution of the magnitude of
such avalanches is the central characteristics in our analysis. For a bundle of
parallel fibers two limiting models of load sharing are studied and contrasted:
the global model in which the load carried by a bursting fiber is equally
distributed among the surviving members, and the local model in which the
nearest surviving neighbors take up the load. For the global model we
investigate in particular the conditions on the threshold distribution which
would lead to anomalous behavior, i.e. deviations from the asymptotics
, known to be the generic behavior. For the local
model no universal power-law asymptotics exists, but we show for a particular
threshold distribution how the avalanche distribution can nevertheless be
explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure
Towards T1-limited magnetic resonance imaging using Rabi beats
Two proof-of-principle experiments towards T1-limited magnetic resonance
imaging with NV centers in diamond are demonstrated. First, a large number of
Rabi oscillations is measured and it is demonstrated that the hyperfine
interaction due to the NV's 14N can be extracted from the beating oscillations.
Second, the Rabi beats under V-type microwave excitation of the three hyperfine
manifolds is studied experimentally and described theoretically.Comment: 6 pages, 8 figure
Failure Processes in Elastic Fiber Bundles
The fiber bundle model describes a collection of elastic fibers under load.
the fibers fail successively and for each failure, the load distribution among
the surviving fibers change. Even though very simple, the model captures the
essentials of failure processes in a large number of materials and settings. We
present here a review of fiber bundle model with different load redistribution
mechanism from the point of view of statistics and statistical physics rather
than materials science, with a focus on concepts such as criticality,
universality and fluctuations. We discuss the fiber bundle model as a tool for
understanding phenomena such as creep, and fatigue, how it is used to describe
the behavior of fiber reinforced composites as well as modelling e.g. network
failure, traffic jams and earthquake dynamics.Comment: This article has been Editorially approved for publication in Reviews
of Modern Physic
Super-poissonian photon statistics and correlations between pump and probe fields in Electromagnetically Induced Transparency
We have measured the photon statistics of pump and probe beams after
interaction with Rb atoms in a situation of Electromagnetically Induced
Transparency. Both fields present super-poissonian statistics and their
intensities become correlated, in good qualitative agreement with theoretical
predictions in which both fields are treated quantum-mechanically. The
intensity correlations measured are a first step towards the observation of
entanglement between the fields.Comment: 4 pages, two-column, 4 figures, first submitted to PRL on Aug. 6,
200
- …