782 research outputs found
Composition profiles of InAsâGaAs quantum dots determined by medium-energy ion scattering
The composition profile along the [001] growth direction of low-growth-rate InAsâGaAs quantum dots (QDs) has been determined using medium-energy ion scattering (MEIS). A linear profile of In concentration from 100% In at the top of the QDs to 20% at their base provides the best fit to MEIS energy spectra
Strong Shock Waves and Nonequilibrium Response in a One-dimensional Gas: a Boltzmann Equation Approach
We investigate the nonequilibrium behavior of a one-dimensional binary fluid
on the basis of Boltzmann equation, using an infinitely strong shock wave as
probe. Density, velocity and temperature profiles are obtained as a function of
the mixture mass ratio \mu. We show that temperature overshoots near the shock
layer, and that heavy particles are denser, slower and cooler than light
particles in the strong nonequilibrium region around the shock. The shock width
w(\mu), which characterizes the size of this region, decreases as w(\mu) ~
\mu^{1/3} for \mu-->0. In this limit, two very different length scales control
the fluid structure, with heavy particles equilibrating much faster than light
ones. Hydrodynamic fields relax exponentially toward equilibrium, \phi(x) ~
exp[-x/\lambda]. The scale separation is also apparent here, with two typical
scales, \lambda_1 and \lambda_2, such that \lambda_1 ~ \mu^{1/2} as \mu-->0$,
while \lambda_2, which is the slow scale controlling the fluid's asymptotic
relaxation, increases to a constant value in this limit. These results are
discussed at the light of recent numerical studies on the nonequilibrium
behavior of similar 1d binary fluids.Comment: 9 pages, 8 figs, published versio
Recommended from our members
Modeling the impact of racial and ethnic disparities on COVID-19 epidemic dynamics.
BACKGROUND: The impact of variable infection risk by race and ethnicity on the dynamics of SARS-CoV-2 spread is largely unknown. METHODS: Here, we fit structured compartmental models to seroprevalence data from New York State and analyze how herd immunity thresholds (HITs), final sizes, and epidemic risk change across groups. RESULTS: A simple model where interactions occur proportionally to contact rates reduced the HIT, but more realistic models of preferential mixing within groups increased the threshold toward the value observed in homogeneous populations. Across all models, the burden of infection fell disproportionately on minority populations: in a model fit to Long Island serosurvey and census data, 81% of Hispanics or Latinos were infected when the HIT was reached compared to 34% of non-Hispanic whites. CONCLUSIONS: Our findings, which are meant to be illustrative and not best estimates, demonstrate how racial and ethnic disparities can impact epidemic trajectories and result in unequal distributions of SARS-CoV-2 infection. FUNDING: K.C.M. was supported by National Science Foundation GRFP grant DGE1745303. Y.H.G. and M.L. were funded by the Morris-Singer Foundation. M.L. was supported by SeroNet cooperative agreement U01 CA261277
Numerical Investigation of a Mesoscopic Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process
In this paper a spatial homogeneous vehicular traffic flow model based on a
stochastic master equation of Boltzmann type in the acceleration variable is
solved numerically for a special driver interaction model. The solution is done
by a modified direct simulation Monte Carlo method (DSMC) well known in non
equilibrium gas kinetic. The velocity and acceleration distribution functions
in stochastic equilibrium, mean velocity, traffic density, ACN, velocity
scattering and correlations between some of these variables and their car
density dependences are discussed.Comment: 23 pages, 10 figure
Fluid moment hierarchy equations derived from quantum kinetic theory
A set of quantum hydrodynamic equations are derived from the moments of the
electrostatic mean-field Wigner kinetic equation. No assumptions are made on
the particular local equilibrium or on the statistical ensemble wave functions.
Quantum diffraction effects appear explicitly only in the transport equation
for the heat flux triad, which is the third-order moment of the Wigner
pseudo-distribution. The general linear dispersion relation is derived, from
which a quantum modified Bohm-Gross relation is recovered in the long
wave-length limit. Nonlinear, traveling wave solutions are numerically found in
the one-dimensional case. The results shed light on the relation between
quantum kinetic theory, the Bohm-de Broglie-Madelung eikonal approach, and
quantum fluid transport around given equilibrium distribution functions.Comment: 5 pages, three figures, uses elsarticle.cl
Clonal diversity and genealogical relationships of gibel carp in four hatcheries
To conserve and utilize the genetic pool of gynogenetic gibel carp (Carassius auratus gibelio), the Fangzheng and Qihe stock hatcheries have been established in China. However, little information is available on the amount of genetic variation within and between these populations. In this study, clonal diversity in 101 fish from these two stock hatcheries and 35 fish from two other hatcheries in Wuhan and Pengze respectively was analysed for variation in serum transferrin. Thirteen clones were found in Fangzheng and Qihe, of which 12 were novel. Six clones were specific to Fangzheng and three specific to Qihe, whereas four were shared among the Fangzheng and Qihe fish. To obtain more knowledge on genetic diversity and genealogical relationships within gibel carp, the complete mitochondrial DNA (mtDNA) control region (similar to 920 bp) was sequenced in 64 individuals representing all 14 clones identified in the four hatcheries. Differences in the mtDNA sequences varied remarkably among hatcheries, with the Fangzheng and Qihe lines demonstrating high diversity and Wuhan and Pengze showing no variation. The Fangzheng and Qihe lines might represent two distinct matrilineal sources. One of the Qihe samples carried the haplotype shared by a most widely cultivated Fangzheng clone, indicating that a Fangzheng clone escaped from cultivated ponds and moved into the Qihe hatchery. Four Fangzheng samples clustered within the lineage formed mainly by Qihe samples, most likely reflecting historical gene flow from Qihe to Fangzheng. It is suggested that clones in Wuhan originated from Fangzheng, consistent with their introduction history, supporting the hypothesis that gibel carp in Pengze were domesticated from individuals in the Fangzheng hatchery.To conserve and utilize the genetic pool of gynogenetic gibel carp (Carassius auratus gibelio), the Fangzheng and Qihe stock hatcheries have been established in China. However, little information is available on the amount of genetic variation within and between these populations. In this study, clonal diversity in 101 fish from these two stock hatcheries and 35 fish from two other hatcheries in Wuhan and Pengze respectively was analysed for variation in serum transferrin. Thirteen clones were found in Fangzheng and Qihe, of which 12 were novel. Six clones were specific to Fangzheng and three specific to Qihe, whereas four were shared among the Fangzheng and Qihe fish. To obtain more knowledge on genetic diversity and genealogical relationships within gibel carp, the complete mitochondrial DNA (mtDNA) control region (similar to 920 bp) was sequenced in 64 individuals representing all 14 clones identified in the four hatcheries. Differences in the mtDNA sequences varied remarkably among hatcheries, with the Fangzheng and Qihe lines demonstrating high diversity and Wuhan and Pengze showing no variation. The Fangzheng and Qihe lines might represent two distinct matrilineal sources. One of the Qihe samples carried the haplotype shared by a most widely cultivated Fangzheng clone, indicating that a Fangzheng clone escaped from cultivated ponds and moved into the Qihe hatchery. Four Fangzheng samples clustered within the lineage formed mainly by Qihe samples, most likely reflecting historical gene flow from Qihe to Fangzheng. It is suggested that clones in Wuhan originated from Fangzheng, consistent with their introduction history, supporting the hypothesis that gibel carp in Pengze were domesticated from individuals in the Fangzheng hatchery
Aerodynamic and Aeroacoustic Numerical Investigation of Turbofan Engines using Lattice Boltzmann Methods
International audienceIn recent years, lattice Boltzmann methods showed promising advantages over standard Navier-Stokes equation-based solvers. In this work, the capacity to predict both self noise and interaction noise is evaluated. First, a rod-airfoil interaction case is investigated, where the turbulence wake of the rod impinges the leading edge of the airfoil. Thereafter, a semi-infinite ducted axial fan is studied, where the turbulent boundary layers on each blades generate self noise which propagates into the duct, and radiates to the far-field. Subsequently, a ducted grid simulation is performed to verify the properties of the grid-generated turbulence. Finally, the grid and the axial-fan are combined within the same configuration, which comprises both self-noise and interaction noise. For each configuration, the agreements with experiments are satisfactory, however, acoustic propagation issues have been encounters from the duct intake to the free field. Nevertheless, the implemented wall model at the solid boundaries seems to correctly predict the acoustic sources on the blades
Lighting Up DNA with the Environment-Sensitive Bright Adenine Analogue qAN4
The fluorescent adenine analogue qAN4 was recently shown to possess promising photophysical properties, including a high brightness as a monomer. Here we report the synthesis of the phosphoramidite of qAN4 and its successful incorporation into DNA oligonucleotides using standard solid-phase synthesis. Circular dichroism and thermal melting studies indicate that the qAN4-modification has a stabilizing effect on the B-form of DNA. Moreover, qAN4 base-pairs selectively with thymine with mismatch penalties similar to those of mismatches of adenine. The low energy absorption band of qAN4 inside DNA has its peak around 358â
nm and the emission in duplex DNA is partly quenched and blue-shifted (ca. 410â
nm), compared to the monomeric form. The spectral properties of the fluorophore also show sensitivity to pH; a property that may find biological applications. Quantum yields in single-stranded DNA range from 1-29â% and in duplex DNA from 1-7â%. In combination with the absorptive properties, this gives an average brightness inside duplex DNA of 275â
M-1 âcm-1 , more than five times higher than the most used environment-sensitive fluorescent base analogue, 2-aminopurine. Finally, we show that qAN4 can be used to advantage as a donor for interbase FRET applications in combination with adenine analogue qAnitro as an acceptor
Phase space reduction of the one-dimensional Fokker-Planck (Kramers) equation
A pointlike particle of finite mass m, moving in a one-dimensional viscous
environment and biased by a spatially dependent force, is considered. We
present a rigorous mapping of the Fokker-Planck equation, which determines
evolution of the particle density in phase space, onto the spatial coordinate
x. The result is the Smoluchowski equation, valid in the overdamped limit,
m->0, with a series of corrections expanded in powers of m. They are determined
unambiguously within the recurrence mapping procedure. The method and the
results are interpreted on the simplest model with no field and on the damped
harmonic oscillator.Comment: 13 pages, 1 figur
- âŠ