671 research outputs found

    Weak measurement of photon polarization by back-action induced path interference

    Full text link
    The essential feature of weak measurements on quantum systems is the reduction of measurement back-action to negligible levels. To observe the non-classical features of weak measurements, it is therefore more important to avoid additional back-action errors than it is to avoid errors in the actual measurement outcome. In this paper, it is shown how an optical weak measurement of diagonal (PM) polarization can be realized by path interference between the horizontal (H) and vertical (V) polarization components of the input beam. The measurement strength can then be controlled by rotating the H and V polarizations towards each other. This well-controlled operation effectively generates the back-action without additional decoherence, while the visibility of the interference between the two beams only limits the measurement resolution. As the experimental results confirm, we can obtain extremely high weak values, even at rather low visibilities. Our method therefore provides a realization of weak measurements that is extremely robust against experimental imperfections.Comment: 11 pages, 3 figure

    A burst search for gravitational waves from binary black holes

    Full text link
    Compact binary coalescence (CBC) is one of the most promising sources of gravitational waves. These sources are usually searched for with matched filters which require accurate calculation of the GW waveforms and generation of large template banks. We present a complementary search technique based on algorithms used in un-modeled searches. Initially designed for detection of un-modeled bursts, which can span a very large set of waveform morphologies, the search algorithm presented here is constrained for targeted detection of the smaller subset of CBC signals. The constraint is based on the assumption of elliptical polarisation for signals received at the detector. We expect that the algorithm is sensitive to CBC signals in a wide range of masses, mass ratios, and spin parameters. In preparation for the analysis of data from the fifth LIGO-Virgo science run (S5), we performed preliminary studies of the algorithm on test data. We present the sensitivity of the search to different types of simulated CBC waveforms. Also, we discuss how to extend the results of the test run into a search over all of the current LIGO-Virgo data set.Comment: 12 pages, 4 figures, 2 tables, submitted for publication in CQG in the special issue for the conference proceedings of GWDAW13; corrected some typos, addressed some minor reviewer comments one section restructured and references updated and correcte

    Data cultures of mobile dating and hook-up apps : emerging issues for critical social science research

    Get PDF
    The ethical and social implications of data mining, algorithmic curation and automation in the context of social media have been of heightened concern for a range of researchers with interests in digital media in recent years, with particular concerns about privacy arising in the context of mobile and locative media. Despite their wide adoption and economic importance, mobile dating apps have received little scholarly attention from this perspective – but they are intense sites of data generation, algorithmic processing, and cross-platform data-sharing; bound up with competing cultures of pro- duction, exploitation and use. In this paper, we describe the ways various forms of data are incorporated into, and emerge from, hook-up apps’ business logics, socio-technical arrangements, and cultures of use to produce multiple and intersecting data cultures. We propose a multi-layered research agenda for critical and empirical inquiry into this field, and suggest appropriate conceptual and methodological frameworks for exploring the social and political challenges of data cultures

    Phenomenological template family for black-hole coalescence waveforms

    Full text link
    Recent progress in numerical relativity has enabled us to model the non-perturbative merger phase of the binary black-hole coalescence problem. Based on these results, we propose a phenomenological family of waveforms which can model the inspiral, merger, and ring-down stages of black hole coalescence. We also construct a template bank using this family of waveforms and discuss its implementation in the search for signatures of gravitational waves produced by black-hole coalescences in the data of ground-based interferometers. This template bank might enable us to extend the present inspiral searches to higher-mass binary black-hole systems, i.e., systems with total mass greater than about 80 solar masses, thereby increasing the reach of the current generation of ground-based detectors.Comment: Minor changes, Submitted to Class. Quantum Grav. (Proc. GWDAW11

    Testing sequential quantum measurements: how can maximal knowledge be extracted?

    Get PDF
    The extraction of information from a quantum system unavoidably implies a modification of the measured system itself. It has been demonstrated recently that partial measurements can be carried out in order to extract only a portion of the information encoded in a quantum system, at the cost of inducing a limited amount of disturbance. Here we analyze experimentally the dynamics of sequential partial measurements carried out on a quantum system, focusing on the trade-off between the maximal information extractable and the disturbance. In particular we consider two different regimes of measurement, demonstrating that, by exploiting an adaptive strategy, an optimal trade-off between the two quantities can be found, as observed in a single measurement process. Such experimental result, achieved for two sequential measurements, can be extended to N measurement processes.Comment: 5 pages, 3 figure

    Disability activism in the new media ecology: campaigning strategies in the digital era

    Get PDF
    This article examines the changing nature of disability activism through the influence of social media. As disabled people in the UK have been subjected to acute austerity, this has coincided with a new era of disability activism channelled through increased social media participation. Drawing on the analysis of one group's online activities and a qualitative content analysis of disability protest coverage in traditional news media during the 2012 Paralympic Games, this article positions this shift in the broader framework of ‘new media ecology’ (Hoskins and O’Loughlin, 2010). We explore how emerging structures of disability activism have begun to offer a more visible profile to challenge government policy and negative stereotypes of disabled people. This highlights the usefulness of campaigning strategies for generating favourable news coverage for disability protest

    Status of NINJA: the Numerical INJection Analysis project

    Get PDF
    The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise

    A scattering quantum circuit for measuring Bell's time inequality: a nuclear magnetic resonance demonstration using maximally mixed states

    Full text link
    In 1985, Leggett and Garg (1985 Phys. Rev. Lett. 54 857) proposed a Bell-like inequality to test (in)compatibility between two fundamental concepts of quantum mechanics. The first concept is 'macroscopic realism', which is the quality of a physical property of a quantum system being independent of observation at the macroscopic level. The second concept is 'noninvasive measurability', which is the possibility of performing a measurement without disturbing the subsequent evolution of a system. One of the key requirement for testing the violation of the Leggett-Garg inequality, or Bell's time inequality, is the ability to perform noninvasive measurements over a qubit state. In this paper, we present a quantum scattering circuit that implements such a measurement for maximally mixed states. The operation of the circuit is demonstrated using liquid-state nuclear magnetic resonance (NMR) in chloroform, in which the time correlations of a qubit are measured on a probe (ancillary) qubit state. The results clearly show a violation region and are in excellent agreement with the predictions of quantum mechanics

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
    corecore