170 research outputs found

    BPS wilson loops in generic conformal N = 2 SU(N) SYM theories

    Get PDF
    We consider the 1/2 BPS circular Wilson loop in a generic N = 2 SU(N) SYM theory with conformal matter content. We study its vacuum expectation value, both at finite N and in the large-N limit, using the interacting matrix model provided by localization results. We single out some families of theories for which the Wilson loop vacuum expectation values approaches the N = 4 result in the large-N limit, in agreement with the fact that they possess a simple holographic dual. At finite N and in the generic case, we explicitly compare the matrix model result with the field-theory perturbative expansion up to order g^8 for the terms proportional to the Riemann value zeta(5), finding perfect agreement. Organizing the Feynman diagrams as suggested by the structure of the matrix model turns out to be very convenient for this computation

    Integrated correlators with a Wilson line in N=4\mathcal{N}=4 SYM

    Full text link
    In the context of integrated correlators in N=4\mathcal{N}=4 SYM, we study the 2-point functions of local operators with a superconformal line defect. Starting from the mass-deformed N=2∗\mathcal{N}=2^* theory in presence of a 12\frac{1}{2}-BPS Wilson line, we exploit the residual superconformal symmetry after the defect insertion, and show that the massive deformation corresponds to integrated insertions of the superconformal primaries belonging to the stress tensor multiplet with a specific integration measure which is explicitly derived after enforcing the superconformal Ward identities. Finally, we show how the Wilson line integrated correlator can be computed by the N=2∗\mathcal{N}=2^* Wilson loop vacuum expectation value on a 4-sphere in terms of a matrix model using supersymmetric localization. In particular, we reformulate previous matrix model computations by making use of recursion relations and Bessel kernels, providing a direct link with more general localization computations in N=2\mathcal{N}=2 theories.Comment: 34 pages, 1 figur

    Emitted radiation and geometry

    Get PDF
    In conformal N = 2 Super Yang-Mills theory, the energy emitted by an accelerated heavy particle is computed by the one-point function of the stress tensor operator in the presence of a Wilson line. In this paper, we consider the theory on the ellipsoid and we prove a conjectured relation between the stress tensor one-point function and the firrst order expansion of the Wilson loop expectation value in the squashing parameter. To do this, we analyze the behavior of the Wilson loop for a small deformation of the background geometry and, at firrst order in the deformation, we fix the kinematics using defect CFT constraints. In the final part of the paper, we analyze the consequences of our results for the weak coupling perturbative expansion. In particular, comparing the weakly coupled matrix model with the ordinary Feynman diagram expansion, we find a natural transcendentality driven organization for the latter

    Integrated correlators with a Wilson line in N= 4 SYM

    Get PDF
    In the context of integrated correlators in N= 4 SYM, we study the 2-point functions of local operators with a superconformal line defect. Starting from the mass-deformed N= 2* theory in presence of a 1/2-BPS Wilson line, we exploit the residual superconformal symmetry after the defect insertion, and show that the massive deformation corresponds to integrated insertions of the superconformal primaries belonging to the stress tensor multiplet with a specific integration measure which is explicitly derived after enforcing the superconformal Ward identities. Finally, we show how the Wilson line integrated correlator can be computed by the N= 2* Wilson loop vacuum expectation value on a 4-sphere in terms of a matrix model using supersymmetric localization. In particular, we reformulate previous matrix model computations by making use of recursion relations and Bessel kernels, providing a direct link with more general localization computations in N= 2 theories

    Correlators between Wilson loop and chiral operators in N=2 conformal gauge theories

    Get PDF
    We consider conformal N=2 super Yang-Mills theories with gauge group SU(N) and Nf=2N fundamental hypermultiplets in presence of a circular 1/2-BPS Wilson loop. It is natural to conjecture that the matrix model which describes the expectation value of this system also encodes the one-point functions of chiral scalar operators in presence of the Wilson loop. We obtain evidence of this conjecture by successfully comparing, at finite N and at the two-loop order, the one-point functions computed in field theory with the vacuum expectation values of the corresponding normal-ordered operators in the matrix model. For the part of these expressions with transcendentality zeta(3), we also obtain results in the large-N limit that are exact in the 't Hooft coupling lambda.Comment: 37 pages, 10 figures. v2: typo corrected, 3 references added. Version to appear on JHE

    Emitted radiation and geometry

    Get PDF

    Strong-coupling results for N=2 superconformal quivers and holography

    Get PDF
    We consider N = 2 superconformal quiver gauge theories in four dimensions and evaluate the chiral/anti-chiral correlators of single-trace operators. We show that it is convenient to form particular twisted and untwisted combinations of these operators suggested by the dual holographic description of the theory. The various twisted sectors are orthogonal and the correlators in each sector have always the same structure, as we show at the lowest orders in perturbation theory with Feynman diagrams. Using localization we then map the computation to a matrix model. In this way we are able to obtain formal expressions for the twisted correlators in the planar limit that are valid for all values of the \u2018t Hooft coupling lambdalambda , and find that they are proportional to 1/lambdalambda\u2000 at strong coupling. We successfully test the correctness of our extrapolation against a direct numerical evaluation of the matrix model and argue that the 1/lambdalambda behavior qualitatively agrees with the holographic description

    N = 2 Conformal SYM theories at large N

    Get PDF
    We consider a class of N = 2 conformal SU(N) SYM theories in four dimensions with matter in the fundamental, two-index symmetric and anti-symmetric representations, and study the corresponding matrix model provided by localization on a sphere S4, which also encodes information on flat-space observables involving chiral operators and circular BPS Wilson loops. We review and improve known techniques for studying the matrix model in the large-N limit, deriving explicit expressions in perturbation theory for these observables. We exploit both recursive methods in the so-called full Lie algebra approach and the more standard Cartan sub-algebra approach based on the eigenvalue distribution. The sub-class of conformal theories for which the number of fundamental hypermultiplets does not scale with N differs in the planar limit from the N = 4 SYM theory only in observables involving chiral operators of odd dimension. In this case we are able to derive compact expressions which allow to push the small 't Hooft coupling expansion to very high orders. We argue that the perturbative series have a finite radius of convergence and extrapolate them numerically to intermediate couplings. This is preliminary to an analytic investigation of the strong coupling behavior, which would be very interesting given that for such theories holographic duals have been proposed

    N=2 Conformal SYM theories at large N

    Get PDF
    We consider a class of N=2 conformal SU(N) SYM theories in four dimensions with matter in the fundamental, two-index symmetric and anti-symmetric representations, and study the corresponding matrix model provided by localization on a sphere S4, which also encodes information on flat-space observables involving chiral operators and circular BPS Wilson loops. We review and improve known techniques for studying the matrix model in the large-N limit, deriving explicit expressions in perturbation theory for these observables. We exploit both recursive methods in the so-called full Lie algebra approach and the more standard Cartan sub-algebra approach based on the eigenvalue distribution. The sub-class of conformal theories for which the number of fundamental hypermultiplets does not scale with N differs in the planar limit from the N=4 SYM theory only in observables involving chiral operators of odd dimension. In this case we are able to derive compact expressions which allow to push the small 't Hooft coupling expansion to very high orders. We argue that the perturbative series have a finite radius of convergence and extrapolate them numerically to intermediate couplings. This is preliminary to an analytic investigation of the strong coupling behavior, which would be very interesting given that for such theories holographic duals have been proposed.Comment: 58 pages, several figures. v2: some comments added in the Conclusion section, a few references added. Version to be published on JHE
    • …
    corecore