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1 Introduction

The radiation emitted by an accelerated charged particle, often called Bremsstrahlung, is

one of the most elementary physical observables in four-dimensional gauge theories. Despite

this simplicity, examples of interacting quantum field theories where this quantity can be

computed exactly are extremely rare. In classical electrodynamics the Larmor formula

(and its relativistic generalization due to Liénard) predicts that the emitted energy is
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fully determined by the electric charge of the particle. An alternative way to derive the

Larmor formula is to consider free Maxwell theory in four dimensions and compute the

expectation value of a Wilson line. Free Maxwell theory in four dimensions has no scale,

thus the straight Wilson line can be treated as a conformal defect. The emitted radiation

is computed by slightly deforming the shape of the defect.

As usual, things get harder when one considers non-Abelian gauge theories, which are

strongly coupled at low energies and where conformality is broken by quantum corrections.

In light of this complexity, it is useful to restrict our attention to those examples of strongly

interacting gauge theories which preserve conformality. These cases typically come with a

larger symmetry group which includes supersymmetry, making them much more tractable.

For the maximally supersymmetric theory in four dimensions, N = 4 Super Yang Mills

(SYM) theory, the combination of defect techniques and supersymmetric localization led

to the derivation of a beautiful formula for the Bremsstrahlung function associated with

the Maldacena Wilson loop [1, 2], preserving half of the supercharges. Shortly after, the

same result was confirmed by an integrability computation [3, 4], providing one of the few

examples of a quantity that is accessible to both techniques.1 The work of [1] heavily relied

on the interpretation of the Wilson line as a superconformal defect. In particular, it was

pointed out that the Bremsstrahlung function can be computed as the two-point function

of an important defect operator, called the displacement operator. Furthermore, the same

quantity can be related to the small angle limit of the cusp anomalous dimension, thus

providing an interesting connection with massive scattering amplitudes.

Similar developments allowed to find an exact expression for the Bremsstrahlung func-

tion in ABJM theory [11], a three-dimensional relative of N = 4 SYM. In that case,

two superconformal Wilson lines are known (see [12] for a recent review). The imme-

diate generalization of the Maldacena Wilson loop turns out to be 1
6BPS [13–15] and

its Bremsstrahlung function was already proposed in [16]. The maximally supersymmet-

ric case [17], instead, involves also fermionic couplings and the computation of the exact

Bremsstrahlung function required a long effort [18–22] culminated in the closed-form ex-

pression presented in [23].

The crucial progress of [16] was the conjecture that the Bremsstrahlung function of

N = 4 SYM and ABJM theory could be related to the one-point function of the stress

tensor operator in the presence of the Wilson line. Motivated by this proposal and by

strong perturbative evidence, the authors of [24] extended this conjecture to the case of

N = 2 conformal theories in four dimensions. In [25] this relation was finally proven using

supersymmetric Ward identities for the defect theory. In a further development, the authors

of [26] studied a different Lorentz invariant observable, called the invariant radiation rate,

and they argued that, for conformal field theories, it can be universally related to the

one-point function of the stress tensor — see section 4 for a thorough discussion of this

result. It is then very clear, at present, that the crucial quantity for computing the emitted

radiation in superconformal theories is the stress tensor one-point function. The latter

1It is worth mentioning that, before the achievement of these exact results, a huge effort has been made

to compute the emitted radiation at strong coupling through the AdS/CFT correspondence [5–10].
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is fully determined by conformal invariance, up to an overall factor hW , which depends

non-trivially on the parameters of the theory:

〈
T00(x)

〉
W

=
hW
|x⊥|4

. (1.1)

Here |x⊥| generically identifies the average orthogonal distance from the location of the

line defect.2

In this paper we address the question of computing hW using supersymmetric local-

ization. In particular, we present a derivation of the relation between hW and a small

deformation of the geometric background, conjectured in [24] (see also [27, 28]):

∂b ln
〈
Wb

〉∣∣∣
b=1

= 12π2hW . (1.2)

Here
〈
Wb

〉
is the expectation value of the Wilson loop on the ellipsoid with squashing

parameter b [29] and the value b = 1 corresponds to the round sphere. The left hand side

of this relation localizes and can be expressed in terms of a matrix model.

Our derivation only uses general properties of the geometric background and of defect

CFTs, thus extending the relation (1.2) to any superconformal line defect. Furthermore,

it provides a general recipe to extract exact results for the stress tensor one-point function

by perturbing the background geometry. We stress that this is a peculiar feature of defect

CFTs, where there is a non-vanishing one-point function and the first-order derivative gives

a non-trivial result.

After proving the relation (1.2), we carry out a careful analysis of the perturbative

structure of the result, along the line of several results that have been achieved thanks to

supersymmetric localization in the presence of a Wilson loop. For the case of N = 4 SYM,

the famous localization result for the 1
2BPS circular Wilson loops [30–32] can be extended

to general configurations preserving less supersymmetry [33–35] and it can be used to

study correlators of the Wilson line with bulk local operators [36–40]. More recently, an

infinite family of defect CFT data was computed by considering a special class of defect

operator insertions [41, 42]. Moreover, thanks to maximal supersymmetry, various other

techniques can be used to study these correlators, such as integrability [3, 4], the conformal

bootstrap [43] and the AdS/CFT correspondence [44, 45].

Even though lowering the supersymmetry to N = 2 reduces the number of techniques

at our disposal, supersymmetric localization can still compute the partition function of

N = 2 Lagrangian theories on different geometries, and allows to capture several important

observables; also the conformal bootstrap can still be used along the lines of [46]. For chiral

primary operators, it turns out that the matrix model on S4 contains all the necessary

information to extract their two-point correlation functions [47–50], provided one solves

the operator mixing induced by the map from the sphere to the plane [51–58]. Moreover,

in the presence of a circular Wilson loop the interacting matrix model captures the chiral

primary one-point functions, at least in the conformal case [59, 60], and its perturbative

2For a fully consistent definition see section 3.2.
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expansion suggests how to organize efficiently the loop corrections in the field theoretic

evaluation of these observables [61].

The relation (1.2), together with the series of equalities between the small angle limit of

the cusp anomalous dimension, the displacement two-point function and the stress tensor

one-point function discussed above, implies that all these apparently distinct observables

are captured by the localization of a non-local operator on a deformed geometry. In partic-

ular, this provides a recipe to extract an exact prediction for a non-chiral scalar operator,

such as the superprimary of the stress tensor multiplet.

Following the pattern that emerged in the case of chiral primary correlators, we study

the constraints imposed by the matrix model expansion on the structure of the diagrams.

We find that a limited class of diagrams contribute to the final result and that the matrix

model provides a precious organizing principle, grouping different diagrams according to

their color structure in a clever way. In particular, the matrix model indicates that the

lowest order contributions at fixed transcendentality arise from the loop corrections to a

single propagator. We show that this structure is very natural, from the field theory side,

when computing the cusp anomalous dimension and the displacement two-point function.

It is instead far from being obvious in the case of the scalar superprimary expectation value,

and could offer some general insight into the convenient way to approach perturbative

computations involving non-chiral operators.

2 Conformal SYM theories on the ellipsoid: a brief review

We start by summarizing how to define N = 2 SYM theories on four-dimensional ellipsoids

preserving rigid supersymmetry. We follow the analysis of [29], whose conventions we

largely adopt.

2.1 The ellipsoid geometry

A four-dimensional ellipsoid can be defined as the surface in R5 described by the equation

x21 + x22
`2

+
x23 + x24˜̀2 +

x25
r2

= 1 . (2.1)

When ` = ˜̀= r ≡ r, the ellipsoid becomes a round sphere S4 of radius r. It is convenient

to introduce the squashing parameter

b =

√
`˜̀ , (2.2)

and use the following parametrization

` = l(b) b , ˜̀=
l(b)

b
, r = r(b) , (2.3)

where l(b) and r(b) are such that l(1) = r(1) = r. In this way, the limit b→ 1 corresponds

to the sphere limit.
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Following [29], to describe the ellipsoid we adopt polar coordinates such that

x1 = ` sin ρ cos θ cosϕ ,

x2 = ` sin ρ cos θ sinϕ ,

x3 = ˜̀ sin ρ sin θ cosχ ,

x4 = ˜̀ sin ρ sin θ sinχ ,

x5 = r cos ρ ,

(2.4)

where ρ ∈ [0, π], θ ∈ [0, π/2], ϕ ∈ [0, 2π] and χ ∈ [0, 2π]. We collectively denote the polar

coordinates as ξµ, to distinguish them from the R5 coordinates xM (see appendix A for

our conventions on indices).

The ellipsoid metric Gµν is simply given by the pullback of the flat Euclidean metric

of the embedding space R5, namely

Gµν =
∂xM
∂ξµ

∂xN
∂ξν

δMN (2.5)

In our coordinate system, this metric is not diagonal and the corresponding vierbein

Em = Emµ dξ
µ are

E1 = ` sinρcosθdϕ, E2 = ˜̀sinρsinθdχ, E3 = f sinρdθ+hdρ, E4 = gdρ, (2.6)

with [29]

f =

√
`2 sin2 θ + ˜̀2 cos2 θ , g =

√
r2 sin2 ρ+

`2 ˜̀2
f2

cos2 ρ , h =
˜̀2 − `2
f

cos ρ sin θ cos θ .

(2.7)

It is easy to see that f → r, g → r and h → 0 when b → 1. Notice that since the polar

coordinates ξµ are dimensionless, the metric Gµν carries dimensions of (length)2; however,

for the conformal invariant theories which we will consider, these dimensions can always

be scaled away.

2.2 Supersymmetric Lagrangians

As shown in [29] following the general approach of [62], in order to construct supersym-

metric field theories on the ellipsoid it is necessary to introduce an off-shell (conformal)

supergravity multiplet treated as a non-dynamical background (see also [63]). In Euclidean

signature, the fields of this supergravity multiplet, also called Weyl multiplet, are (see for

example [64])

Gµν , ψIµ , Tµν , T̄µν , M̃ , ηI , V 0
µ , (Vµ)IJ , (2.8)

where Gµν is the metric, ψIµ (with I = 1, 2) is the gravitino, Tµν and T̄µν are, respectively,

real self-dual and anti self-dual tensors,3 M̃ is a scalar field, ηI is the dilatino, and finally

V 0
µ and (Vµ)IJ are the gauge fields of the SO(1, 1)×SU(2)R R-symmetry.

3Do not confuse Tµν , written in an upright font, with the stress-energy tensor Tµν .
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The action for a N = 2 SYM theory on an ellipsoid with squashing parameter b has

been derived in [29] and is given by

Sb =
1

g2YM

∫
d4ξ
√

detGL (2.9)

where L = LYM+Lmatter. The first term, LYM, accounts for the couplings of the gauge vector

multiplet, which comprises the gauge connection Aµ, the gaugino λI and its conjugate λ̄I ,

the scalar fields φ and φ̄, and the auxiliary field DIJ — all in the adjoint of the gauge

group G. The explicit expression of LYM is

LYM = tr

[
1

2
FµνFµν+16Fµν(φ̄Tµν+φT̄µν)+64 φ̄2TµνTµν+64φ2T̄µνT̄µν−4Dµφ̄D

µφ

+2

(
M̃−R

3

)
φ̄φ−2iλIσµDµλ̄I−2λI [φ̄,λI ]+2λ̄I [φ, λ̄I ]+4[φ, φ̄]2− 1

2
DIJDIJ

]
(2.10)

where R is the Ricci scalar associated to the ellipsoid metric Gµν . Our conventions for the

traces and the spinors are explained in appendix A. Here we simply recall that the sum

over repeated indices I involves an ε-tensor. For example

λIλI = εIJ λJ λI (2.11)

with ε12 = 1.

A few comments are in order. Following [65], we have written the coefficient of the

φ̄φ-term as twice
(
M̃ − R

3

)
. This combination is equivalent to the field M used in [29], but

for our purposes it is more convenient to distinguish the contribution due the background

field M̃ from the one due to the curvature. Moreover, if we add the R φ̄φ-term to the scalar

kinetic term, we obtain

− 4 tr

(
Dµφ̄D

µφ+
R

6
φ̄φ

)
. (2.12)

The coefficient of 1/6 in front of the curvature shows that the scalar fields of the vector

multiplet are conformally coupled to the ellipsoid metric. We also note that the SU(2)R
connection (Vµ)IJ does not appear explicitly in the Lagrangian, but only through the co-

variant derivative of the gaugino, which is defined as

Dµλ̄
α̇
I = ∂µλ̄

α̇
I − i[Aµ, λ̄

α̇
I ] +

1

4
ωmnµ (σ̄mn)α̇β̇λ̄

β̇
I + iλ̄α̇J (Vµ)J I , (2.13)

where ωmnµ is the spin-connection, and similarly for the left-handed components. Note that

the gauge field V 0
µ has been set to zero, as in [29]. We discuss this choice at the end of this

subsection.

The matter part of the Lagrangian, Lmatter, accounts for the couplings of N = 2

hypermultiplets transforming in a (generically reducible) representation R of the gauge

group. The number of these hypermultiplets is clearly equal to the dimension of R, which

we denote simply by r. If the index iR of the matter representation equals that of the
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adjoint, then the resulting N = 2 SYM theory is conformal.4 In the following we will

restrict to this case. If we denote the scalar fields of the hypermultiplets by qIA and their

fermionic partners by ψA and ψ̄A, with A = 1, . . . , 2r being an index of Sp(r), the matter

Lagrangian takes the form

Lmatter =
1

2
Dµq

IDµqI − qI{φ, φ̄}qI −
1

8
qIqIqJ q

J +
1

8

(
M̃ +

2

3
R

)
qIqI

− i

2
ψ̄σ̄µDµψ −

1

2
ψφψ +

1

2
ψ̄φ̄ψ̄ +

i

2
ψσµνTµνψ −

i

2
ψ̄σ̄µνT̄µνψ̄ − qIλIψ + ψ̄λ̄Iq

I .

(2.14)

Here the sum over the Sp(r) indices has been understood. If one wants to write it explicitly,

one has for example

qIqI = ΩAB qIB qIA , (2.15)

where ΩAB is the real anti-symmetric invariant tensor of Sp(r). Notice that the matter

fields are coupled to the vector multiplet through an embedding of the gauge group into

Sp(r) and that, as before, the SU(2)R connection appears only in the covariant derivatives

defined by

DµqIA = ∂µqIA − i(Aµ)A
BqIB + iqJA(Vµ)J I . (2.16)

Again, in the Lagrangian (2.14) we have replaced the scalar M appearing in [29] with(
M̃ − R

3

)
in order to disentangle the contribution due to the curvature from that due to

the scalar field of the supergravity multiplet. Moreover, combining the RqIqI-term with

the kinetic terms we obtain

1

2

(
Dµq

IDµqI +
R

6
qIqI

)
(2.17)

which shows that also the scalar fields of the matter hypermultiplets are conformally cou-

pled to the curvature of the ellipsoid.

The action Sb in (2.9) is invariant under the N = 2 supersymmetry transformations

of the gauge and matter fields given in appendix B provided the supergravity background

is carefully chosen. In particular, the metric Gµν must be that of the ellipsoid as in (2.5),

while Tµν , T̄µν , M̃ and (Vµ)IJ must assume background values determined by solving the

Killing spinor equations that ensure the vanishing of the supersymmetry transformations

of the gravitino and dilatino. Their expressions, found in [29] and to be recalled below,

depend on the geometric properties of the ellipsoid, and in particular on the squashing

parameter b. As already mentioned, the SO(1, 1)R connection V 0
µ can be consistently set

to zero, since the Killing spinor equations determine the background geometry up to some

residual degrees of freedom. This choice pursued in [29] is justified also by the necessity of

reproducing the so-called Ω-background [66] at the North and South poles of the ellipsoid

4For example, for SU(N) if R is the sum of Nf fundamental representations, each of dimension N

and index 1/2, we have r = Nf N , iR = Nf/2 and the condition for conformal invariance is the familiar

constraint Nf/2 = N .

– 7 –
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and is allowed by a residual symmetry from the supersymmetry conditions, as widely

explained in [63].

We conclude by observing that on a round sphere with no background fields turned

on, except for the metric, the above actions reduce to those considered for the localization

on S4 in [32].

2.3 Supergravity background

The Killing spinor equations provide specific geometric constraints that allow to fix the

profile of the background fields, although not uniquely. In [29] it was found that these

fields are given by5

M̃ =
1

f2
+
h2 + r2

f2g2
− 4

fg
+ ∆M̃ , (2.18a)

Tα
β =

1

4

(
1

f
− 1

g

)
(τ1θ )α

β +
h

4fg
(τ2θ )α

β + ∆Tα
β , (2.18b)

T̄α̇β̇ =
1

4

(
1

f
− 1

g

)
(τ1θ )α̇β̇ −

h

4fg
(τ2θ )α̇β̇ + ∆T̄α̇β̇ , (2.18c)

where the functions f , g and h are defined in (2.7), while the matrices τ iθ are

τ iθ = τ i

(
e+iθ 0

0 e−iθ

)
, (2.19)

with τ i being the usual Pauli matrices. Note that the self-dual and anti self-dual tensors

Tµν and T̄µν are related to the matrices Tα
β and T̄α̇β̇ in (2.18b) and (2.18c) according to

Tα
β = −i (σµν)α

β Tµν , T̄α̇β̇ = −i (σ̄µν)α̇ β̇ T̄µν . (2.20)

Finally, in each line of (2.18) the last contribution, indicated with a ∆, depends on three

arbitrary functions c1, c2 and c3, which parameterize the ambiguity of the background

solution. In fact we have [29]

∆M̃ = 8

(
1

g
∂ρ −

h

gf sin ρ
∂θ +

`2 ˜̀2 cos ρ

gf4 sin ρ
+

(`2 + ˜̀2 − f2) cos ρ

gf2 sin ρ
− cos ρ

f sin ρ

)
c1

+ 8

(
1

f sin ρ
∂θ +

`2 ˜̀2h cos ρ

g2f4 sin ρ
+

2 cot 2θ

f sin ρ
− h cos ρ

fg sin ρ

)
c2 − 16(c21 + c22 + c23) ,

(2.21)

and

∆Tα
β = tan

ρ

2

(
c1(τ

1
θ )α

β + c2(τ
2
θ )α

β + c3(τ
3)α

β
)
, (2.22a)

∆T̄α̇β̇ = cot
ρ

2

(
− c1(τ1θ )α̇β̇ + c2(τ

2
θ )α̇β̇ + c3(τ

3)α̇β̇

)
. (2.22b)

5To be precise [29] contains the explicit expression of M , not M̃ . To obtain the latter, one can simply

use the relation M̃ = M + R
3

and the Ricci curvature associated to the metric (2.5), R = 3
(

1
g2

+ r2

f2g2

)
.

– 8 –
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It is easy to check that in the sphere limit when b → 1, all non ∆-terms in (2.18) vanish.

Therefore, since on the sphere the only surviving background field is the metric, we must

require that also ∆M̃ , ∆T and ∆T̄ vanish when b = 1. In turn this requirement implies

the ci’s must be zero at b = 1, i.e. they must have the following form

ci = c′i(b− 1) +O
(
(b− 1)2

)
. (2.23)

It is important to remark that also the SU(2)R connection (Vµ)IJ acquires a background

profile in the supersymmetric realization of the SYM theory on the ellipsoid; however, in

section 3.2 we will explain why the explicit expression of this profile is not needed in the

present work and for this reason we have not reported it here.

3 Relating hW to the ellipsoid deformation

In the set-up reviewed in the previous section, we want to analyze how the vacuum expec-

tation values of gauge invariant operators in the conformal N = 2 SYM theory respond to

a deformation of the ellipsoid geometry, and specifically how they depend on the squashing

parameter b in the vicinity of the sphere limit. The goal is to find a direct relation between

the quantity hW defined in the introduction and the vacuum expectation value of half-BPS

Wilson loops to prove the conjecture (1.2).

Let us consider a gauge invariant operator Xb which may depend on the ellipsoid

squashing parameter. Its vacuum expectation value is〈
Xb

〉
=

1

Zb

∫
DA e−Sb Xb , (3.1)

where A here denotes schematically all fields in the conformal N = 2 SYM theory whose

action Sb is given in (2.9), and Zb is the partition function

Zb =

∫
DA e−Sb . (3.2)

From this definition it easily follows that

∂b ln
〈
Xb

〉∣∣∣
b=1

=
−
〈
∂bSbXb

〉
+
〈
∂bSb

〉 〈
Xb

〉
+
〈
∂bXb

〉〈
Xb

〉 ∣∣∣
b=1

= −
〈

:∂bSb : Xb

〉〈
Xb

〉 ∣∣∣
b=1

+

〈
∂bXb

〉〈
Xb

〉 ∣∣∣
b=1

(3.3)

where the : :’s indicate the normal ordering, namely the subtraction of all possible self-

interactions. This expression should not depend on the parametrization (2.3) of the scales

of the ellipsoid.

Since the action Sb depends on b only through the background supergravity fields,

we have

∂bSb =

∫
d4ξ
√

detG

[
1√

detG

∂(
√

detGL)

∂Gµν
∂bG

µν +
∂L

∂(V µ)J I
∂b(V

µ)J I

+
∂L

∂Tµν
∂bT

µν +
∂L

∂T̄µν
∂bT̄

µν +
∂L

∂M̃
∂bM̃

]
.

(3.4)
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We are interested in evaluating this expression at b = 1. By definition, the variation of

the action with respect to the metric at b = 1 yields the stress-energy tensor Tµν on the

sphere. More precisely, we have:

∂(
√

detGL)

∂Gµν

∣∣∣
b=1

= −1

2

√
detG0 Tµν (3.5)

where G0
µν is the metric on the round sphere S4, namely

G0
µν = lim

b→1
Gµν . (3.6)

Similarly, the variations of the action with respect to the other background fields of the

supergravity multiplet yield the other bosonic components of the stress-energy tensor su-

permultiplet, known also as the supercurrent multiplet. With the conventions given in

appendix B, we have

∂L

∂(V µ)J I

∣∣∣
b=1

= − i

2
(tµ)J

I ,
∂L

∂Tµν

∣∣∣
b=1

= −16Hµν ,

∂L

∂T̄µν

∣∣∣
b=1

= −16H̄µν ,
∂L

∂M̃

∣∣∣
b=1

= −O2 .

(3.7)

Using the Lagrangian L = LYM + Lmatter reviewed in the previous section, we find

(tµ)J
I = 4i tr[λIσµλ̄J ]− 2i tr[λKσµλ̄K] δIJ + qI

↔
DµqJ +

1

2
qK
↔
DµqK δ

I
J ,

Hµν = − tr[F+
µν φ̄]− i

32
ψσµνψ ,

H̄µν = − tr[F−µν φ] +
i

32
ψ̄σ̄µνψ̄ ,

O2 = −2 tr[φ̄φ]− 1

8
qIqI

(3.8)

where F+
µν and F−µν are the self-dual and anti self-dual parts of the gauge field strength. As

a matter of fact, in the following we will not really need these explicit expressions, but we

quoted them here to allow the check that the coefficients relating them to the variations

of the Lagrangian as given in (3.7) are consistent with the supersymmetry transformations

reported in appendix B — indeed, these coefficients will be important for our results.

With these definitions, we can rewrite (3.4) as

∂bSb
∣∣
b=1

=−
∫
d4ξ
√

detG0

[
1

2
Tµν ∂bG

µν
∣∣
b=1

+
i

2
(tµ)J

I ∂b(V
µ)J I

∣∣
b=1

+16Hµν ∂bT
µν
∣∣
b=1

+16H̄µν ∂bT̄
µν
∣∣
b=1

+O2∂bM̃
∣∣
b=1

]
.

(3.9)

In the following we will use this set-up to study how a half-BPS Wilson loop responds to

a deformation of the ellipsoid.
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x1

x2

x3,4,5

ℓ

Figure 1. Wilson loop wrapped around the circle of radius ` in the x1, x2 plane on the ellipsoid.

3.1 Half-BPS Wilson loops

On the ellipsoid there are two possible half-BPS Wilson loop defects. One wraps the circle

of radius ` in the x1, x2 plane, the other wraps the circle of radius ˜̀ in the x3, x4 plane. The

two configurations can be exchanged by sending b ↔ 1/b. Without loss of generality we

can choose to wrap the circle of radius `, see figure 1. Hence, in the polar coordinates (2.4),

the Wilson loop locus C is defined by χ = θ = 0, ρ = π/2. The explicit expression of this

Wilson loop is [29]

Wb =
1

dR
trR P exp

[
i

∫
C
dϕ
(
Aϕ − `(φ+ φ̄)

)]
(3.10)

where dR is the dimension of the representation R in which the Wilson loop transforms.

Notice that this operator may explicitly depend on b through the coefficient ` of the scalar

part, once the parametrization (2.3) is used.

From the formulæ (3.3) and (3.9), we obtain

∂b ln
〈
Wb

〉∣∣∣
b=1

=

∫
d4ξ
√

detG0

[
1

2

〈
Tµν
〉
W
∂bG

µν
∣∣
b=1

+
i

2

〈
(tµ)J

I〉
W
∂b(V

µ)J I
∣∣
b=1

+ 16
〈
Hµν

〉
W
∂bT

µν
∣∣
b=1

+ 16
〈
H̄µν

〉
W
∂bT̄

µν
∣∣
b=1

+
〈
O2

〉
W
∂bM̃

∣∣
b=1

]
+

〈
∂bWb

〉〈
Wb

〉 ∣∣∣
b=1

(3.11)

where we have adopted the short-hand notation
〈
X
〉
W

to denote the normalized one-point

function of :X : in the presence of the Wilson loop on the sphere, namely

〈
X
〉
W
≡
〈

:X : Wb

〉〈
Wb

〉 ∣∣∣
b=1

=

〈
XW

〉〈
W
〉 − 〈X〉 (3.12)

with W denoting the Wilson loop on the sphere. Our goal is to explicitly calculate the

integrals in (3.11).

3.2 Non-vanishing one-point functions

The half-BPS Wilson line in a N = 2 SCFT preserves an osp(4∗|2) sub-algebra of the

full su(2, 2|2) superconformal algebra and, in particular, it preserves the one-dimensional
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conformal group. In a defect conformal field theory, the functional form of the one-point

functions of bulk operators is entirely fixed by the preserved defect (super)-conformal sym-

metry. To write their expressions for the conformal SYM theory we are considering, it is

convenient to resort to the so-called embedding formalism (see for example [67]).

Embedding coordinates. We introduce light-cone embedding coordinates PM=(P 0,PM ),

with M = 0, . . . , 5 and M = 1, . . . , 5. The metric in the six-dimensional space is the

Minkowski metric, ηMN = diag(−1, 1, 1, 1, 1, 1). Different sections of the light-cone lead

to different expressions in real space, all of which are related to each other by a conformal

transformation. Since the sphere is conformally equivalent to a plane, we can choose a

specific light-cone section. In particular, for a one-dimensional defect like our Wilson loop,

we distinguish the coordinates PM into three parallel ones (associated to the residual

SO(1, 2) conformal group of the defect) and three orthogonal ones (associated to the SO(3)

orthogonal rotations). Of course, when the defect sits on a sphere, like in our case, the

conformal Killing vectors are not as immediate as in the planar case, but nevertheless there

is a very natural choice to make for the light-cone section, namely

PM =
(
r, xM

∣∣
b=1

)
(3.13)

with xM
∣∣
b=1

are the coordinates given in (2.4) evaluated on the sphere of radius r. The

coordinate P 0 is determined by the condition PMηMNP
N = 0, while the two coordinates

along which the defect stretches, i.e. x1 and x2, are the parallel coordinates in embedding

space. To sum up, in our case P 0 = r and P 1,2 = x1,2
∣∣
b=1

are the parallel coordinates,

while P 3,4,5 = x3,4,5
∣∣
b=1

are the orthogonal ones. With this assignment, the extraction of

the orthogonal and parallel scalar products, denoted respectively by ◦ and •, is a trivial

exercise:

P ◦ P =
(
x23 + x24 + x25

)∣∣
b=1

= r2
(

cos2 ρ+ sin2 θ sin2 ρ
)
,

P • P = −r2 +
(
x21 + x22

)∣∣
b=1

= −r2
(
1− cos2 θ sin2 ρ

)
= −P ◦ P .

(3.14)

A further ingredient that is needed to write the expression of the one-point functions is

the projection of indices using the so-called z-variables [67, 68]. For a symmetric traceless

tensor, like the stress-energy tensor Tµν , one can contract all indices with a complex vector

zµ, such that z · z ≡ zµG0
µνz

ν = 0. Then the one-point function of this tensor in the

presence of a defect is a polynomial in z. If one needs the one-point function with open

indices, one can apply to this polynomial the Todorov operator [69]

Dµ =

(
1 + z · ∂

∂z

)
∂

∂zµ
− 1

2
zµ

∂2

∂z · ∂z . (3.15)

A useful, but not unique, strategy to extend this prescription to the light-cone is to intro-

duce a vector Z in the embedding space given by

ZM = zµ∂µP
M . (3.16)

Using the relation

∂µP
M ηMN ∂νP

N = G0
µν , (3.17)
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which can be easily verified in our case, one can check that

PMηMNZ
N = ZMηMNZ

N = 0 (3.18)

if z · z = 0.

For tensors that are not symmetric or traceless, the procedure is a bit more intricate and

a general discussion can be found in [68]. For our purposes, it is enough however to consider

the case of the anti-symmetric two-index tensors. In this case two different z-vectors, z(1)

and z(2), are introduced and the one-point function is expressed as a polynomial in these

two vectors. Then, by introducing two Z-vectors in the embedding space following the

same steps as in (3.16), one can easily extend this formalism to the light-cone and obtain

the explicit form of the one-point function.

The relevant one-point functions. In the presence of a conformal line defect, only

operators with even spin can acquire an expectation value [67] (the situation may be

different for special cases where parity odd structures are available, but this is not the

case for a line defect in four dimensions). Therefore, in our case, the one-point function of

(tµ)J
I vanishes: 〈

(tµ)J
I〉
W

= 0 , (3.19)

and the only non-zero one-point functions are those of the stress-tensor Tµν , of the two

anti-symmetric tensors Hµν and H̄µν , and the scalar operator O2.

The one-point function of the stress-energy tensor can be extracted from [67] and reads

zµzν
〈
Tµν
〉
W

= 4hW
(P ◦ Z)2 − (Z ◦ Z) (P ◦ P )

(P ◦ P )3
(3.20)

where hW is the same quantity discussed in the introduction. Using the explicit expressions

of P and Z given in (3.13) and (3.16), we find

zµzν
〈
Tµν
〉
W

=hW
z2χ sin2 θ sin2 ρ

(
cos2θ−2cos2 θ cos2ρ−3

)
−4
(
zρ sinθ+zθ cosθ sinρcosρ

)2
r4
(

cos2 ρ+sin2 θ sin2 ρ
)3 .

(3.21)

Applying the Todorov operator (3.15) we can open the indices and easily obtain the explicit

expression of
〈
Tµν
〉
W

in our coordinate system, namely〈
Tµν
〉
W

= DµDν
(
zλzκ

〈
Tλκ
〉
W

)
. (3.22)

For the one-point function of Hµν and H̄µν we need to rely on the procedure for parity

odd quantities given in [68]. Adapting it to our case, we find two possible structures:

zµ1 z
ν
2

〈
Hµν + H̄µν

〉
W

= k1
εIJKP

IZJ1 Z
K
2

(P ◦ P )2
+ k2

εABCP
AZB1 Z

C
2

(P ◦ P )2
, (3.23)

where I, J,K run over the orthogonal directions and A,B,C run over the parallel directions.

To determine the constants k1 and k2, we use the supersymmetric Ward identities that allow
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us to relate these coefficients to the prefactor hW appearing in the one-point function of

the stress-energy tensor. This calculation is described in appendix C and the result is

k1 = 0 , k2 =
3hW

8
. (3.24)

Inserting this in (3.23), we then obtain

zµ1 z
ν
2

〈
Hµν + H̄µν

〉
W

=
3hW

8
cos2 θ sin2 ρ

(z1φz2θ − z2φz1θ) tan θ + (z1ρz2φ − z2ρz1φ) cot ρ

r3
(

cos2 ρ+ sin2 θ sin2 ρ
)2 .

(3.25)

Opening the indices and projecting onto the self-dual and anti self-dual parts, we find

〈
Hα

β
〉
W
≡
〈
Hµν

〉
W

(σµν)α
β =

3ihW
4

cos θ cos ρ (τ1)α
β − sin θ (τ2)α

β

r3
(

cos2 ρ+ sin2 θ sin2 ρ
)2 ,

〈
H̄ α̇

β̇

〉
W
≡
〈
H̄µν

〉
W

(σ̄µν)α̇β̇ = −3ihW
4

cos θ cos ρ (τ1)α̇β̇ + sin θ (τ2)α̇β̇

r3
(

cos2 ρ+ sin2 θ sin2 ρ
)2 ,

(3.26)

where τ i are the usual Pauli matrices.

The last one-point function, that of the scalar superprimary operator O2, is the easiest

one. Its functional form can be extracted from [67] and, in our coordinate system, reads

〈O2〉W =
3hW

8

1

P ◦ P =
3hW

8

1

r2
(

cos2 ρ+ sin2 θ sin2 ρ
) . (3.27)

The coefficient 3hW/8 has been fixed from the superconformal Ward identities (see also [24]).

Absence of anomalies. The functional form of the one-point functions (3.21), (3.26)

and (3.27) on S4 has been obtained from that of the corresponding one-point functions

on R4 by performing a conformal transformation. However, this transformation is affected

by a Weyl anomaly and thus we have to make sure that this anomaly will not plague our

results. To show this, we can use a simple argument inspired by [70].

Let us recall that the one-point function of the stress-energy tensor on S4 is not van-

ishing, even in the absence of a defect, and that it contains a contribution proportional

to the anomaly coefficient a [71].6 For a supersymmetric field theory in the presence of

additional background fields, like the N = 2 SYM theory we are considering, the conformal

anomaly is constructed out of the full Weyl supergravity multiplet and not just out of the

background metric [72, 73]. As a consequence, we expect non-vanishing one-point functions

for the various components of the stress tensor multiplet. These would all be proportional

to the anomaly coefficient a. This anomalous contribution is a local feature of the stress

tensor multiplet, which is not affected by the presence or absence of a defect. This is very

natural since one never expects that bulk CFT data, like the anomaly coefficients, are

modified by a defect. Therefore, under a Weyl transformation Ĝµν → Gµν = ε2σĜµν of a

6For conformally flat manifolds there is no contribution from the B-type anomalies.
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flat metric Ĝµν , the stress tensor one-point function in the presence of a Wilson line W

changes as follows 〈
T̂µνW

〉〈
W
〉 →

〈
TµνW

〉〈
W
〉 = e−2σ

〈
T̂µνW

〉〈
W
〉 +

〈
Tµν
〉

(3.28)

where T̂µν is the stress tensor in flat space. The last term in the right hand side is the

anomalous contribution, while the term proportional to e−2σ is the result of the conformal

transformation applied to the one-point function in the flat space. In the case where the

conformal transformation maps R4 to S4, this term is just what we have denoted by
〈
Tµν
〉
W

in the previous subsection. Indeed, from (3.12) we have

〈
Tµν
〉
W

=

〈
TµνW

〉〈
W
〉 −

〈
Tµν
〉

= e−2σ
〈
T̂µνW

〉〈
W
〉 . (3.29)

This argument, which applies of course to all other components of the stress tensor

multiplet, shows that the sphere one-point functions that appear in (3.11) are precisely

those that are obtained by performing the conformal transformation on those in flat space,

as we have done to write (3.21), (3.26) and (3.27). Thus, our result is not affected by the

anomaly. Actually, this argument is rather general and holds for an arbitrary line defect

in any N = 2 SCFT. For the specific case we consider in this paper though, i.e. N = 2

SYM theory, we know that the anomaly coefficient a does not depend on the coupling and

the absence of anomalous contributions can also be ascertained from a simple free theory

computation.

3.3 Explicit integration

We have collected all ingredients that are necessary to perform the integrations in (3.11).

Let us begin by considering the integral involving the one-point function of the stress-

energy tensor. This has to be regularized by introducing a cutoff ε to keep the integration

away from the location of the defect; the result is∫
d4ξ
√

detG0

[
1

2

〈
Tµν
〉
W
∂bG

µν
∣∣
b=1

]
=

(
3l′−3r′−3

ε3
− l
′−r′−5

ε

)
2πhW +O(ε) (3.30)

where

l′ = ∂bl(b)
∣∣
b=1

, r′ = ∂br(b)
∣∣
b=1

(3.31)

with l(b) and r(b) being the functions used in (2.3) to parametrize the scales of the ellipsoid.

The expression (3.30) is purely divergent and does not contain any finite contribution.

The divergent part is clearly a feature of the regularization procedure since there is no

universal logarithmic term. In particular, if we computed the integral (3.30) in dimensional

regularization we would simply find zero. For this reason the contribution (3.30) can

be discarded.
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The other terms in (3.11), instead, yield finite contributions. In fact, we find∫
d4ξ
√

detG0
[
16
〈
Hµν

〉
W
∂bT

µν
∣∣
b=1

]
=

∫
d4x
√

detG
[
− 2i

〈
Hα

β
〉
W
∂bTβ

α
∣∣
b=1

]
=
(
14 + 4l′ − 4r′

)
π2hW −

3

2
π4hW , (3.32a)∫

d4ξ
√

detG0
[
16
〈
H̄µν

〉
W
∂bT̄

µν
∣∣
b=1

]
=

∫
d4ξ
√

detG0
[
− 2i

〈
H̄ α̇

β̇

〉
W
∂bT̄

β̇
α̇

∣∣
b=1

]
=
(
14 + 4l′ − 4r′

)
π2hW −

3

2
π4hW , (3.32b)∫

d4ξ
√

detG0
[〈
O2

〉
W
∂bM̃

∣∣
b=1

]
= −

(
16 + 8l′ − 8r′

)
π2hW + 3π4hW . (3.32c)

It is interesting to observe that, while the individual integrals depend on the constants l′

and r′ that are related to the chosen parametrization of the ellipsoid scales, remarkably

their sum is independent of such a choice. Indeed, all terms involving l′ and r′ exactly

cancel when we add (3.32a), (3.32b) and (3.32c). Notice that also the terms proportional

to π4 cancel in the sum. Therefore, discarding the unphysical divergent terms (3.30) for

the aforementioned reasons and collecting all the finite contributions, we can rewrite (3.11)

as follows

∂b ln
〈
Wb

〉∣∣∣
b=1

= 12π2hW +

〈
∂bWb

〉〈
Wb

〉 ∣∣∣
b=1

. (3.33)

The quantity in the left hand side is independent of the parametrization of the ellipsoid,

and so also the last term the right hand side must be independent of this parametrization.

We can then evaluate it choosing l(b) = r/b, which according to (2.3) implies that ` = r.

In this case the Wilson loop (3.10) does not explicitly depend on b and thus
〈
∂bWb

〉
= 0.

On the other hand, if we choose a different parametrization for the ellipsoid scales, we still

get this same result. Indeed, as one can see from (3.10) the Wilson loop may explicitly

depend on b only through the coefficient ` in front of the scalar term in the exponent, and

the derivative
〈
∂bWb

〉∣∣
b=1

would lead to the integral of a defect one-point function, which

clearly vanishes if the defect preserves conformal invariance along its profile. This fact can

also be easily checked perturbatively at leading order, as we show in appendix D.

In conclusion the result of our calculation is

∂b ln
〈
Wb

〉∣∣∣
b=1

= 12π2hW , (3.34)

which proves the conjecture of [24].

Independence on c1, c2 and c3. The supergravity background of the ellipsoid given

in (2.18) depends on three arbitrary functions c1, c2 and c3 that parametrize the ambiguity

in the solution of the Killing spinor equations. These arbitrary functions appear in the

∆-terms given in (2.21) and (2.22). However, our result (3.34) is robust and does not

depend on these arbitrary functions. Here we would like to explain why this happens.

The ∆-terms in the supergravity background give rise to the following contribution∫
d4ξ
√

detG0

[
− 2i

〈
Hα

β
〉
W
∂b∆Tβ

α
∣∣
b=1
− 2i

〈
H̄ α̇

β̇

〉
W
∂b∆T̄β̇ α̇

∣∣
b=1

+
〈
O2

〉
W
∂b∆M̃

∣∣
b=1

]
(3.35)
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Let us first observe that the terms proportional to c2i in ∆M̃ do not contribute since their

b-derivative at b = 1 vanishes because of (2.23). Similarly, the dependence on c3 disappears

because in ∂b∆Tα
β and ∂b∆T̄α̇β̇ it multiplies the diagonal matrix τ3, while, as one can see

from (3.26), the one-point functions
〈
Hα

β
〉
W

and
〈
H̄ α̇

β̇

〉
W

are proportional to τ1 and τ2

and hence are anti-diagonal.

We then remain with the terms proportional to c1 and c2. Evaluating them, we find

that they vanish because they can be recast as total derivatives. Indeed, (3.35) becomes

3hW

∫
d4ξ

[
∂ρ

(
sin θ cos θ sin3 ρ

cos2 ρ+ sin2 θ sin2 ρ
c′1

)
+ ∂θ

(
sin θ cos θ sin2 ρ

cos2 ρ+ sin2 θ sin2 ρ
c′2

)]
= 0 . (3.36)

This proves that the ambiguity in the background solutions does not affect our result (3.34).

4 Relating hW to the emitted energy and the Bremsstrahlung

In section 3 we provided a proof of the relation (3.34) between the coefficient hW of the

stress-energy tensor one-point function and the vacuum expectation value of a half-BPS

Wilson loop on an ellipsoid in the sphere limit. Here we comment on the connection between

hW and the coefficient appearing in the two-point function of the so-called displacement

operator, a particular defect excitation related to the breaking of translational invariance

which carries spin one in the space orthogonal to the defect.

Let us start by considering a conformal Wilson line in four dimensions stretched along

one of the coordinate axes, say for example x4. In this case the displacement operator

carries an index i = 1, 2, 3 in the three transverse directions and is denoted by Di. Its

two-point function is entirely fixed in terms of the defect CFT data and is of the form〈
Di(x)Dj(0)

〉
W

=
CD δ

ij

(x2)2
. (4.1)

The coefficient CD is a distinctive feature of the CFT and is related to several relevant

physical observables. For example, CD determines the small angle limit of the cusp anoma-

lous dimension Γcusp(ϕ), an important quantity which appears as the universal divergent

part of a cusped Wilson line expectation value [1]:

Γcusp(ϕ) = −CD
12

ϕ2 +O(ϕ4) (4.2)

The coefficient of −ϕ2 in this expression is usually called Bremsstrahlung function and

denoted by B; in other words we have

CD = 12B . (4.3)

The same quantity CD also determines the total energy ∆Etot emitted by an accelerated

charged particle [1] under the assumption that the initial and final accelerations are equal

(and in particular whenever they are equally vanishing, i.e. when the particle velocity is

asymptotically constant). The formula reads

∆Etot =
π

6
CD

∫
dτ a2 (4.4)
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CFT CD hW CD vs hW R P

Maxwell e2

π2
e2

32π2 CD = 32hW −2π
(

e2

12π2

)
a2 −2π

(
e2

12π2

)
a2

Conformal scalar e2

2π2
e2

96π2 CD = 48hW −2π
(

e2

36π2

)
a2 −2π

(
e2

24π2

)
a2 −

(
e2

36π

)
ȧ0

γ

N = 2 U(1) 3e2

2π2
e2

24π2 CD = 36hW −2π
(
e2

9π2

)
a2 −2π

(
e2

24π2

)
a2 −

(
e2

36π

)
ȧ0

γ

Table 1. The relevant quantities for three different free conformal theories. The first line refers to

the Maxwell theory with Lagrangian L = 1
4F

2, where F is the electro-magnetic field strength, with

a line operator W = exp
(
ie
∫
dxµAµ

)
. The second line refers to a scalar field φ with Lagrangian

L = 1
2

(
∂φ2 + R

6 φ
2
)

where R is the Ricci scalar, with a line operator W = exp
(
ie
∫
dτ φ

)
. The third

line refers to N = 2 SYM theory described in section 2 with gauge group U(1). Notice that the

coupling constant e2 used here is related to the Yang-Mills coupling g2YM used there as e2 = g2YM/2.

where a is the four-acceleration of the particle and τ the proper time parametrizing its

world-line.

On the other hand, for a particle with four-velocity u and momentum p, one can define

another quantity, called the invariant radiation rate R = uµ
dpµ

dτ . This power rate is not

integrated along the world-line, and is manifestly Lorentz invariant. Recently in [26], it

was found in many different examples of conformal theories that R is always related to hW
in the following simple way

R = −16π

3
hW a2 . (4.5)

Comparing (4.4) and (4.5), we can expect a simple relation also between CD and hW . It

was already understood in [16], and then formally proven in [25], that in supersymmetric

theories a relation between these two observables does indeed exist and can be derived using

supersymmetric Ward identities on defect correlation functions. The precise relation is

CD = 36hW (4.6)

for any line defect preserving some supersymmetry.

In general both CD and hW are non-trivial functions of the theory parameters (cou-

pling, rank of the gauge group, etc.) and it is remarkable that the relation (4.6) is theory-

independent and exact. Without supersymmetry, however, there is no universal relation

between CD and hW [16]. To understand why, it is useful to consider the example of free

theories. In table 1 we report the explicit expressions of CD, hW and their relation for

three different simple conformal theories: the free Maxwell theory, the free theory of a con-

formally coupled scalar and the N = 2 U(1) gauge theory. Clearly, the relation between

CD and hW is not universal and, in general, in the presence of exactly marginal couplings

we would expect the proportionality coefficient to depend on these parameters (i.e. that

no simple relation exists between the two functions).

The other two quantities indicated in table 1 are the aforementioned invariant radiation

rate R and the emitted power P = dp0

dt . The relation of the latter with CD and hW is subtle
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since P is not Lorentz invariant and thus is dependent on the observer. In particular, the

expression of P always contains a Lorentz-invariant term proportional to CD a
2, but it may

also contain a boundary term proportional to the time-derivative of the time-component

of the acceleration ȧ0. This boundary term may contribute to the integral defining the

total emitted energy if the initial and final accelerations are not equal [26], thus modifying

equation (4.4). This is what happens for example when the acceleration is such that

ȧµ = −a2uµ with constant a2, which is the configuration considered in [16]. This additional

term explains the failure in finding a universal relation between the total emitted energy

and the stress tensor one-point function, using the argument of [16].7

In presence of supersymmetry, using (4.6) and the results of section 3, we can conclude

that for any N = 2 conformal SYM theory the coefficient CD of the two-point function of

the displacement operator is given by

CD =
3

π2
∂b ln

〈
Wb

〉∣∣∣
b=1

(4.7)

or, equivalently, that in these theories the Bremsstrahlung function B is

B =
1

4π2
∂b ln

〈
Wb

〉∣∣∣
b=1

(4.8)

as conjectured in [24].

5 Matrix model calculation

The relation (3.34) between the coefficient hW in the stress tensor one-point function and

the b-derivative of the ellipsoid Wilson loop, which also implies the relations (4.7) and (4.8)

for CD and B, relies on the superconformal symmetry of the gauge theory on the ellipsoid

constructed in [29]. In that same reference, supersymmetric localization was applied to

this theory to express its partition function and the expectation value of circular Wilson

loops in terms of a matrix model. This makes it possible to explicitly evaluate hW using

matrix model techniques.

5.1 hW in the localization matrix model

We start by reviewing the N = 2 ellipsoid matrix model obtained in [29], which is a

generalization of the matrix model for SYM theories on the sphere derived in [32]. For

concreteness, we focus here on the case in which the gauge group is SU(N), the matter

fields transform in a representation R such the β-function vanishes and the Wilson loop is

in the fundamental representation. According to the localization principle, the only non-

vanishing contributions to the path integrals in (3.1) and (3.2) arise from the following

saddle point values of the fields:

Aµ = 0 , φ = φ̄ = − i

2
a0 , DIJ = −iwIJ a0 , (5.1)

7We are grateful to B. Fiol and J. Montoya for a useful discussion on this issue.
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where a0 is a N×N matrix taking values in the su(N) Lie Algebra. The explicit expression

of wIJ can be found in [29]. The classical action (2.9) at this saddle point becomes8

Sb =
8π2

g2YM

`˜̀ tr a20 , (5.2)

while the circular BPS Wilson loop (3.10) becomes

Wb =
1

N
tr exp(−2π` a0) . (5.3)

The path integral measure appearing in the partition function and in any other expec-

tation value, reduces to the integration over the matrix a0. Besides the Gaussian factor

arising from e−Sb , the integrand comprises also a one-loop determinant, that accounts for

the fluctuations around the saddle point, and a non-perturbative instanton part. Both

of these terms turn out to depend only on the ellipsoid scales ` and ˜̀ appearing in (2.1)

and not on r. Moreover, the product `˜̀ and the matrix a0 always occur together in the

combination
√
`˜̀a0. One can thus eliminate entirely the dependence on the product `˜̀ by

changing the integration variable from a0 to the matrix9

a = −
√
`˜̀

√
8π2

g2YM

a0 . (5.4)

The overall constant factors arising from the Jacobian for this change of variable cancel out

in all properly normalized expectation values between the integral in the numerator and

the partition function in the denominator. When written in terms of the matrix a, both

the one-loop determinant and the instanton terms only depend on the squashing parameter

b =
√
`/˜̀, and for b = 1 they reduce to the expressions obtained on the sphere in [32].

Moreover, as shown in [29], they are symmetric in the exchange b↔ 1/b. As a consequence

of this symmetry, the partition function

Zb =

∫
da e− tr a2

∣∣Z1-loop
b

∣∣2 ∣∣Z inst
b

∣∣2 (5.5)

does not depend on b at first order, namely

∂bZb
∣∣∣
b=1

= 0 . (5.6)

8We denote matrix model quantities by calligraphic letters.
9In [29] the change of variable from a0 to â0 =

√
`˜̀a0 is performed. We prefer to rescale a0 also with

a factor of
√

8π2/g2YM so that the classical action Sb becomes simply tr a2. This leads to a Gaussian term

exp(− tr a2) in the matrix model integrand, while the one-loop determinant and the instanton factor get

organized, respectively, into a perturbative and a non-perturbative expansion in gYM. This gYM-dependent

rescaling is the matrix-model equivalent of the rescaling one needs to do on the gauge fields to make the

coupling constant gYM appear in the covariant derivatives. The overall minus sign in (5.4) is irrelevant; we

insert it simply because we like to work with a Wilson loop operator in the matrix model with a positive

exponent, see (5.3).
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The general expression of hW . As we stated above, we want to compute hW using

equation (1.2) by evaluating the right hand side in the matrix model, namely by

hW =
1

12π2
∂b log

〈
Wb

〉∣∣∣
b=1

. (5.7)

In terms of the matrix a, the Wilson loop (5.3) reads

Wb =
1

N
tr exp

(
b gYM√

2
a

)
, (5.8)

and its expectation value is

〈
Wb

〉
=

1

Zb

∫
da Wb e− tr a2

∣∣Z1-loop
b

∣∣2 ∣∣Z inst
b

∣∣2 . (5.9)

Due to (5.6), in computing ∂b
〈
Wb

〉
at b = 1 we get a contribution only when the derivative

is applied to the operator Wb itself. Thus, we obtain

∂b ln
〈
Wb

〉∣∣∣
b=1

=

〈
∂bWb

∣∣
b=1

〉〈
W
〉 ≡

〈
W ′
〉〈

W
〉 . (5.10)

Here W stands for Wb=1, that is

W =
1

N
tr exp

(
gYM√

2
a

)
= 1 +

g2YM

4N
tr a2 +O(g3YM) . . . , (5.11)

while

W ′ = ∂bWb

∣∣
b=1

=
gYM√

2

1

N
tr

(
a exp

(
gYMa√

2

))
=
g2YM

2N
tr a2 +O(g3YM) . (5.12)

Note that we have the identity

W ′ = gYM

∂W
∂gYM

. (5.13)

In (5.10), both expectation values in the right hand side are given by expressions analo-

gous to (5.9) but at b = 1, i.e. they are expectation values in the matrix model on the

round sphere.

Inserting (5.10) into (5.7) expresses hW in terms of expectation values of operators in

the sphere matrix model:

hW =
1

12π2

〈
W ′
〉〈

W
〉 . (5.14)

Let us observe that in the matrix model it is convenient to choose a strategy, implemented

through the rescaling (5.4), such that the b-derivative acts on the operator only. This is the

opposite of what happened in the field theory proof of section 3, where the b-dependence

occurred only through the action.
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The N = 4 case. In theN = 4 SYM theory, the matrix model is purely gaussian as both

the one-loop determinant and the instanton factor reduce to 1. Then, after using (5.13)

in (5.14), the gYM-derivative commutes with the expectation value and thus, as already

derived in [74], one has

hW

∣∣∣
N=4

=
1

12π2
gYM

∂ ln
〈
W
〉

∂gYM

. (5.15)

This big simplification no longer occurs in the N = 2 case, due to the non-trivial 1-loop

determinant and instanton factors. Nevertheless the quantity in (5.12), and then through

eq. (5.7) the value of h and B, can be computed in a standard fashion in the interacting

N = 2 matrix model on S4. In particular, we will employ the techniques of [61] to describe

its perturbative expansion in gYM.

5.2 Perturbative expansion

We now want to explicitly evaluate hW in a N = 2 superconformal gauge theory us-

ing (5.14). We consider the perturbative limit in which the coupling gYM is small and the

instanton contributions become trivial, namely we set Zinst = 1. The one-loop determinant

can instead be expanded as follows:

|Z1−loop|2 = e−Sint , (5.16)

where

Sint =
∑
n=2

(−1)n
(
g2YM

8π2

)n
ζ(2n− 1)

n
Tr′R a

2n . (5.17)

Notice that the absence of the g2YM term in this expansion is due to the fact that we are

considering a conformal theory for which the β-function vanishes. In the right hand side

of (5.17) we used the notation introduced in [61]:

Tr′R • = TrR • − Tradj • (5.18)

where R is the representation in which the matter hypermultiplets transform. In the

N = 4 SYM theory, where R is the adjoint, we easily see that Sint = 0. For N = 2

models, instead, this combination accounts for the matter content of the “difference theory”

(N = 2)− (N = 4), namely the theory in which the adjoint hypermultiplets of the N = 4

model are removed and replaced by the matter hypermultiplets in the representation R [75].

The vacuum expectation value of any observable f in the interacting matrix model

can be expressed in terms of vacuum expectation values computed in the Gaussian matrix

model, which we distinguish by a subscript 0. In particular, we can rewrite (5.14) as

hW =
1

12π2

〈
W ′ e−Sint

〉
0〈

W e−Sint
〉
0

. (5.19)

Expanding W and W ′, as well as Sint, in series of gYM we obtain the perturbative ex-

pansion of hW in terms of expectation values of multi-traces of powers of the matrix a in
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the Gaussian model. Such quantities can be easily computed in a recursive way, see for

instance [54, 59], relying on the Wick theorem. If we write a = actc, where the su(N)

generators tc in the fundamental representation are normalized so that tr tctd = δcd/2,

we have10 〈
acad

〉
0

= δcd . (5.20)

Using such techniques we can compute hW to any desired perturbative order.

Transcendentality driven expansion. It is interesting to organize the computation in

terms of the Riemann zeta-values appearing in (5.17). Expanding (5.19) in powers of gYM,

we get an expression of the form

hW = g2YM x1
(
1 +O(g2YM)

)
+ g6YM ζ(3)x3

(
1 +O(g2YM)

)
+ g8YM ζ(5)x5

(
1 +O(g2YM)

)
+ g10YM

[
ζ(7)x7

(
1 +O(g2YM)

)
+ ζ(3)2 x3,3

(
1 +O(g2YM)

)]
+ . . .

(5.21)

where the coefficients xn1,n2,... can be explicitly computed.

Let us then introduce the quantity h̃W obtained by keeping, for each Riemann zeta-

value, only the lowest term in gYM, namely

h̃W = g2YM x1 + g6YM ζ(3)x3 + g8YM ζ(5)x5 + g10YM

[
ζ(7)x7 + ζ(3)2 x3,3

]
+ . . . . (5.22)

This quantity is interesting for the comparison with explicit field-theoretic perturbative

computations that we will carry out in the next section.

Considering the expression of hW given in (5.19), we see that it reduces to h̃W if we

keep only the lowest term in the perturbative expansions of both W andW ′ given in (5.11)

and (5.12). Thus we can formally resum (5.22) and write

h̃W =
1

12π2
g2YM

2N

〈
tr a2 e−Sint

〉
0〈

e−Sint
〉
0

=
1

12π2
g2YM

2N

〈
tr a2

〉
(5.23)

to express h̃W in terms of the propagator of the interacting matrix model. This latter is

given by 〈
acad

〉
= δcd

(
1 + Π

)
, (5.24)

where Π is a gYM-dependent constant describing the effect of the perturbative corrections

to the propagator. Using this in (5.23), we find that h̃W is given by

h̃W =
1

12π2
g2YM(N2 − 1)

4N

(
1 + Π

)
. (5.25)

The corrections Π were computed in [61] with the result11

Π = ζ(3)

(
g2YM

8π2

)2

C′4 − ζ(5)

(
g2YM

8π2

)3

C′6 +O(g8) , (5.26)

10We normalize the flat measure as da =
∏
c

(
dac/
√

2π
)
, so that

∫
da e− tr a2 = 1. In this way the

contraction (5.20) immediately follows.
11In fact, the generic term proportional to a single Riemann zeta value has the expression

(−1)n
(
g2YM

8π2

)n
ζ(2n− 1) C′2n .

– 23 –



J
H
E
P
0
1
(
2
0
2
0
)
0
7
5

where C′2n is the totally symmetric contraction of the tensor

C′c1...c2n = Tr′R Tc1 . . . Tc2n . (5.27)

In general C′2n is a rational function in N (for more details we refer to section 3 of [61]).

For instance, for the conformal SQCD theory (with Nf = 2N) one finds

C′4 = −3(N2 + 1) , C′6 = −15(N2 + 1)(2N2 − 1)

2N
. (5.28)

Similar expressions can be easily worked out at higher order and for other superconformal

theories with matter fields transforming in different representations.

Exploiting these methods and using the relations (4.7) and (4.8), one can derive the

perturbative expansion of the coefficient CD in two-point function of the displacement

operator and the Bremsstrahlung function B, at any desired order.

6 Field theory interpretation

We now compare the results of the previous sections to the computation of the

Bremsstrahlung function B, of the normalization CD in two-point function of the dis-

placement operator, and of the normalization hW of the stress-energy one-point function

using ordinary perturbative field theory in flat space. This comparison is not meant as

a check of the relation (1.2) of these quantities to the Wilson loop on the ellipsoid, since

this is no longer conjectured but proven. Rather, it is meant to illustrate how the matrix

model results based on this relation suggest how to organize the diagrammatic compu-

tations. These suggestions might be useful in the future for studying related quantities

and/or different theories.

We will focus on the lowest order contributions in gYM for each given structure of

Riemann zeta values. In the matrix model we introduced the notation h̃W for the sum of

all such contributions to hW given in (5.22) and (5.23); analogously we will use the notations

B̃ and C̃D. As shown in (5.25), in the matrix model h̃W is proportional to the propagator.

This fact suggests that also on the field-theory side the diagrams contributing to h̃W , B̃

and C̃D are given by propagator corrections. We will see that for the Bremsstrahlung

and for the displacement two-point function this is indeed natural. It is instead much less

obvious for the one-point function of operators in the stress-energy multiplet.

Notations and conventions. In order to rely on previous literature, we perform a

change of conventions with respect to sections 2 and 3. We redefine the adjoint scalar

fields of the vector multiplet by

φ→ i gYM√
2
φ , φ̄→ i gYM√

2
φ̄ , (6.1)

while all other components of the gauge multiplet are rescaled by gYM, namely Aµ → gYMAµ,

etc. . Having done this, the sum of the YM and matter Lagrangians given in (2.10)

and (2.14), in flat space and with all supergravity background fields set to zero, reduces
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ϕ

Figure 2. The contour of a Wilson line with cusp angle ϕ.

to the Lagrangian described — in N = 1 superfield notation and in the Fermi-Feynman

gauge — in section 4 of [61]. This Lagrangian yields canonical (super) propagators. In

particular, at tree level we have〈
Acµ(x)Adν(y)

〉
0

= δcd δµν ∆(x− y) ,〈
φc(x) φ̄ d(y)

〉
0

= δcd ∆(x− y) ,
(6.2)

where

∆(x) =

∫
dDk

(2π)D
ei k·x

k2
, (6.3)

with D = 4− 2ε.

Propagator corrections. In the N = 4 SYM theory, the tree-level propagators (6.2)

receive no corrections. In the N = 2 case, instead, they are corrected in perturbation

theory, and take the form〈
Acµ(x)Adν(y)

〉
= (1 + Π) δcd δµν ∆(x− y) ,〈

φc(x) φ̄ d(y)
〉

= (1 + Π) δcd ∆(x− y) .
(6.4)

In [61] it has been argued, and then shown explicitly up to three loops, that the correction

factor Π introduced above coincides with the factor Π appearing in the matrix model given

in (5.24).

6.1 The Bremsstrahlung function

We now compute the leading order coefficient of the small angle expansion of the cusp

anomalous dimension (see equation (4.2)). This quantity arises from the expectation value

of a cusped Wilson line Wcusp which we take in the fundamental representation of SU(N).

Its contour is made of two semi-infinite rays parametrized as follows

xµ = vµ1 τ1 for −∞ < τ1 < 0 ,

xµ = vµ2 τ2 for 0 < τ2 < +∞ .
(6.5)

The velocity vectors vµ1 and vµ2 are such that v1 · v1 = v2 · v2 = 1. They define the cusp

angle12 ϕ (see figure 2) by the relation

v1 · v2 = cosϕ . (6.6)

12Note that the angle ϕ of the present section has nothing to do with the ellipsoid coordinate defined

in (2.4).
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ϕ

Figure 3. The g2YM-contribution to the vacuum expectation value of a cusped Wilson line. The

double straight/wiggled line stands for the sum of the gluon and scalar propagators.

The cusped Wilson line is explicitly defined by

Wcusp =
1

N
trP exp

(
gYM

∫ 0

−∞
dτ1 L1(τ1) + gYM

∫ +∞

0
dτ2 L2(τ2)

)
, (6.7)

where we introduced the generalized connections

L1(τ1) = i v1 ·A(v1τ1) +
1√
2

(
e+iϑ/2 φ(v1τ1) + e−iϑ/2 φ̄(v1τ1)

)
,

L2(τ2) = i v2 ·A(v2τ2) +
1√
2

(
e−iϑ/2 φ(v2τ2) + e+iϑ/2 φ̄(v2τ2)

)
.

(6.8)

Here ϑ is an “internal” angular parameter that can be defined at the cusp [74, 76]; it can

be set to zero without any problem.

Expanding Wcusp in gYM, we find that its vacuum expectation value at order g2YM is

given by the diagram represented in figure 3.

Using the explicit expression of the Wilson line and the propagators (6.2), this leads

to write

〈
Wcusp

〉
= 1 + g2YM

N2 − 1

2N

(
cosϕ− cosϑ

)
I(ϕ) +O(g4YM) , (6.9)

where13

I(ϕ) =

∫
dDk

(2π)D
1

k2 (k · v1 − δ) (k · v2 − δ)
. (6.10)

This integral is evaluated in appendix E. Substituting the result (E.14) in (6.9), we get

〈
Wcusp

〉
= 1− 1

ε

(g2YM

8π2

) N2 − 1

2N

ϕ (cosϕ− cosϑ)

sinϕ
.+O(g4YM) (6.11)

The cusp anomalous dimension Γcusp is defined by [78]14

〈
Wcusp

〉
= exp

(
− 1

2ε
Γcusp

)
. (6.12)

13Following [77], we regulate the IR divergence of the τ1 and τ2 integrals by introducing a dumping factor

e−iδ(τ1−τ2) with Im δ > 0 which suppresses the contributions from the large (−τ1+τ2) region and introduces

the dependence on the IR cut-off δ.
14Often the definition of Γcusp is given within a cut-off regularization scheme, in which case 1/(2ε) gets

replaced by log (ΛUV/ΛIR).
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n− loop

ϕ

Figure 4. The contribution to the vacuum expectation value of the cusped Wilson line arising

from the a single, loop corrected, propagator — of the gluon or of the scalar.

Taking the logarithm of (6.11) and expanding for small angles, we find

Γcusp ' −
(
ϕ2 − ϑ2

)
B (6.13)

with

B =

(
g2YM

8π2

)
N2 − 1

2N
+O(g4YM) . (6.14)

This agrees with the lowest order term in the matrix model result (5.25), taking into

account that B = 3hW .

The form of (5.25) indicates that the sum of all perturbative corrections contributing

to the lowest order for each transcendentality weight, which we denoted by B̃, can be

obtained by replacing in the above derivation the tree level propagators (6.2) with their

loop-corrected counterparts (6.4). In other words, at n loops, we just have to consider the

diagram represented in figure 4.

Indeed, it is not difficult to realize that considering diagrams with more propagators

attached to the Wilson line increases the order in gYM without giving rise to higher tran-

scendentality. The only difference in the explicit expression of the diagrams in figure 4

with respect to the tree-level case of figure 3, is an overall factor of (1 + Π). In this way

we get

B̃ =

(
g2YM

8π2

)
N2 − 1

2N
(1 + Π) , (6.15)

in perfect agreement with (5.25), since B̃ = 3h̃W .

6.2 The displacement two-point function

We now consider the field-theory computation of the coefficient CD of the displacement

two-point function, introduced in (4.1). In [1] this quantity was shown to be related to the

Bremsstrahlung function by CD = 12B in the N = 4 SYM case. This relation holds as

well in any N = 2 superconformal theory, and it is understandable at the diagrammatic

level in a simple way.

We take a circular Wilson loop15 in the fundamental representation given by

W =
1

N
trP exp

(
i gYM

∫ 2π

0
dτL(τ)

)
, (6.16)

15We could have chosen as well a straight Wilson line.
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where

L(τ) = Aµẋ
µ − i

|ẋ|√
2

(φ+ φ̄) (6.17)

with the circular contour being parametrized as xµ(τ) = (R cos τ,R sin τ, 0, 0) for τ ∈
[0, 2π]. Rather than the displacement operator Di, in this case it is easier to consider its

scalar superpartner O. While Di arises from the breaking of the conservation of the stress-

energy tensor by the Wilson loop defect, the scalar operator O arises from the breaking of

the conservation law for the SO(1, 1)R R-symmetry current. From this fact, following the

prescription in [25], one can determine its explicit expression finding

O(τ) =
i gYMR√

2

(
φ(τ)− φ̄(τ)

)
(6.18)

where φ(τ) ≡ φ(x(τ)) and similarly for φ̄.

The functional form of the defect two-point function of this operator is fixed by the

residual conformal symmetry, and its coefficient is related to the one of the displacement

two-point function by supersymmetric Ward identities. For the circular Wilson loop we

are considering, this amounts to〈
O(τ1)O(τ2)

〉
W

=
CD
12

1

(1− cos τ12)2
(6.19)

where τ12 = τ1 − τ2. Using (6.16) and (6.18), at the lowest order in gYM, we find〈
O(τ1)O(τ2)

〉
W

=
1

N
trP

〈
ei gYM

∫ τ1
0 dτL(τ) O(τ1) e

i gYM

∫ τ2
τ1
dτL(τ) O(τ2) e

i gYM

∫ 2π
τ2
dτL(τ)

〉
= −g

2
YMR

2

4N

〈(
φc(τ1)− φ̄c(τ1)

) (
φc(τ2)− φ̄c(τ2)

)〉
+O(g4YM) . (6.20)

Using the tree-level scalar propagator (6.2) and the explicit parametrization x(τ), we find

〈
O(τ1)O(τ2)

〉
W

=
g2YM(N2 − 1)

16π2N

1

(1− cos τ12)2
+O(g4YM) . (6.21)

Thus, comparing with (6.19), we obtain

CD = 12

(
g2YM

8π2

)
N2 − 1

2N
+O(g4YM) , (6.22)

which agrees with (6.14) since CD = 12B. This tree-level computation of CD is based on

the insertion of a scalar propagator attached to the defect, and is strictly analogous to

what we have done in the previous subsection for the calculation of B; the only difference

is that in that case both the scalar and the gluon propagator contribute.

The matrix model result (5.25) tells us that the contributions at the lowest order for

each transcendentality are simply obtained by replacing the tree-level scalar propagator

with the full propagator (6.4), as represented in figure 5.

By summing all these contributions, we produce an extra factor of (1 + Π) so that

C̃D = 12

(
g2YM

8π2

)
N2 − 1

2N
(1 + Π) = 12B̃ . (6.23)
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n− loop

τ1

τ2

Figure 5. The contribution to the two-point function of the scalar partner of the displacement

operator arising from the n-loop correction of the scalar propagators.

6.3 The stress tensor one-point function

We finally consider the direct diagrammatic computation of the hW appearing in the defect

one-point functions of the operators of the stress-energy tensor multiplet on the sphere. To

do so we consider the scalar component of this multiplet, namely the operator O2 defined

in the last line of (3.8), which in terms of the rescaled adjoint scalar fields becomes16

O2(x) = tr[φ̄φ](x)− 1

8
qIqI(x) . (6.24)

As before, we take the defect to be the circular Wilson loop (6.16).

The one-point function of O2 in the presence of W is fixed by the conformal symmetry

and depends on the orthogonal scalar product P ◦P , as shown in (3.27). While in section 3

we used the sphere projection, here we project on R4. Then, we exploit the residual

conformal symmetry to place O2 in the origin, where P ◦ P = R2/4. In this way we have〈
O2

〉
W

=
3hW
2R2

. (6.25)

Using (6.16), at the lowest order we find〈
O2

〉
W

=
g2YM

2N

R2

2

∮
dτ1dτ2

〈
tr [φ̄(0)φ(0)] tr

[
(φ+ φ̄)(x(τ1)) (φ+ φ̄)(x(τ2))

]〉
+O(g4YM) .

(6.26)

Inserting the tree-level scalar propagator (6.2) and taking into account that x(τi)
2 = R2,

we get 〈
O2

〉
W

=
g2YM(N2 − 1)

8N

1

4π2R2
+O(g4YM) , (6.27)

from which it follows that

hW =
1

3

(
g2YM

8π2

)
N2 − 1

2N
+O(g4YM) , (6.28)

in agreement with the lowest order term in the matrix model result (5.25), and the relations

CD = 12B = 36hW .

16Notice that here we do not include the factor of gYM in the rescaling of φ and φ̄, to avoid introducing

in the operator an explicit dependence on the coupling constant.
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O2

Figure 6. Tree level contribution to the one-point function of O2.

We note, however, that already at tree level the diagrammatic expansion of this observ-

able differs significantly from that of the Bremsstrahlung function B and of the normaliza-

tion constant CD in displacement two-point function, because it involves two propagators,

and not just one, as is clear from figure 6.

Despite this fact, the matrix model result (5.25) for h̃W suggests that the loop diagrams

that correct the result at leading order in each transcendentality should organize themselves

in terms of loop corrections to a single scalar propagator. This is far from obvious from the

point of view of the Feynman diagrams, which are not so easy to compute beyond one loop.

Indeed, O2 does not belong to the class of chiral operators which enjoy nice cancellation

properties due to superconformal symmetry (see for example [47, 51, 54, 59]). In this

case, the matrix model could therefore provide non-trivial suggestions on how one should

organize the higher loop diagrams contributing to the correlators of non-chiral operators.

This is an interesting point which is currently under investigation.17
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A Notations and conventions

Notations for indices.

• d = 4 vector indices (ellipsoid): µ, ν, · · · = 1, . . . , 4;

• d = 4 vector indices (flat space): m,n, · · · = 1, . . . , 4;

17Work in progress by L. Bianchi, M. Billò, F. Galvagno, P. Gregori and A. Lerda.
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• spatial flat space indices: i, j = 1, 2, 3;

• d = 5 embedding space indices (flat space): M,N · · · = 1, . . . , 5;

• d = 6 light-cone embedding coordinates: M,N = 0, . . . , 5;

• d = 6 “parallel” indices: A,B,C = 0, 1, 2, and “orthogonal” indices: I, J,K = 3, 4, 5;

• d = 4 chiral and anti-chiral spinor indices: α, β and α̇, β̇;

• SU(2)R symmetry indices: I,J , · · · = 1, 2;

• Sp(r) indices: A,B = 1, . . . , 2r;

• SU(N) adjoint indices: c, d, · · · = 1, . . . , N2 − 1.

Conventions for traces and spinors. We denote by ψ a chiral spinor of components

ψα, and by ψ̄ an anti-chiral spinor of components ψ̄α̇. The spinor indices are raised and

lowered with the following rules:

ψα = εαβ ψβ , ψα = εαβ ψ
β , ψ̄α̇ = εα̇β̇ ψ̄β̇ , ψ̄α̇ = εα̇β̇ ψ̄

β̇ , (A.1)

where

ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1 . (A.2)

Contraction rules for undotted/dotted indices are:

ψχ ≡ ψα χα , ψ̄χ̄ ≡ ψ̄α̇ χ̄α̇ . (A.3)

We realize the Euclidean Clifford algebra

σmσ̄n + σnσ̄m = 2 δmn 1 (A.4)

by means of the matrices (σm)αβ̇ and (σ̄m)α̇β that can be taken to be

σm = (−iτ i,1) , σ̄m = (iτ i,1) , (A.5)

where τ i are the ordinary Pauli matrices. They are such that

(σ̄m)α̇α = εαβ εα̇β̇(σm)ββ̇ . (A.6)

Finally we use:

σmn =
1

2
(σmσ̄n − σnσ̄m) , σ̄mn =

1

2
(σ̄mσn − σ̄nσm) , (A.7)

where σmn is anti self-dual, while σ̄mn is self-dual.

Our conventions for traces over the group generators are as follows. In any represen-

tation R we take

trR T
cT d = iR δ

cd (A.8)

where iR is the index of R. In particular, for the fundamental representation of SU(N),

we have

trT cT d =
1

2
δcd . (A.9)

– 31 –



J
H
E
P
0
1
(
2
0
2
0
)
0
7
5

B SUSY transformations

Let us start by listing the on-shell SUSY transformations of the fields in the vector multi-

plet. We follow [29], but consider the SUSY parameters ξ as Grassmann odd.

δAµ = iξIσµλ̄I − iξ̄I σ̄µλI ,

δφ = −iξIλI ,

δφ̄ = +iξ̄I λ̄I ,

δλI =
1

2
σµνξI(Fµν + 8φ̄Tµν) + 2σµξ̄IDµφ+ σµDµξ̄Iφ+ 2iξI [φ, φ̄] ,

δλ̄I =
1

2
σ̄µν ξ̄I(Fµν + 8φT̄µν) + 2σ̄µξ̄IDµφ̄+ σ̄µDµξI φ̄− 2iξ̄I [φ, φ̄] .

(B.1)

This algebra closes on the following field equations

σ̄µDµλI = 2i[φ, λ̄I ] , σµDµλ̄I = 2i[φ̄, λI ] . (B.2)

For the hypermultiplet the on-shell SUSY transformations are

δqI = −iξIψ + iξ̄Iψ̄ ,

δψ = 2σµξ̄IDµq
I + σµDµξ̄Iq

I − 4iξI φ̄q
I ,

δψ̄ = 2σ̄µξIDµq
I + σ̄µDµξIq

I − 4iξ̄Iφq
I . (B.3)

Now we consider the stress tensor multiplet. In flat space, the on-shell SUSY trans-

formations are
δO2 = iχ̄α̇I ξ̄

α̇I+iξαIχ
I
α ,

δχIα =Hα
βξIβ+

1

2
jαα̇ξ̄

α̇I+
1

2
tαα̇J

I ξ̄α̇J +∂αα̇O2ξ̄
α̇I ,

δχ̄α̇I =−H̄ β̇
α̇ξ̄β̇I+

1

2
jαα̇ξ

α
I+

1

2
tαα̇I

J ξαJ −∂αα̇O2ξ
α
I ,

δHα
β =

i

2
Jαα̇

β
I ξ̄
α̇I+

2i

3

(
∂αα̇χ

β
I+∂βα̇χαI

)
ξ̄α̇I ,

δH̄ β̇
α̇ =− i

2
J̄αα̇

β̇IξαI−
2i

3

(
∂αα̇χ̄

β̇I+∂α
β̇χ̄Iα̇

)
ξαI ,

δjαα̇ =− i

2
Jαα̇β

IξβI−
i

2
J̄αα̇β̇I ξ̄

β̇I+
4i

3
ξβI
(
2∂βα̇χ

I
α−∂αα̇χIβ

)
+

4i

3
ξ̄β̇I
(
2∂αβ̇χ̄α̇I−∂αα̇χ̄β̇I

)
,

δtαα̇I
J = iJαα̇β

J ξβI+iJ̄αα̇βI ξ̄
β̇J +

4i

3
ξβI
(
2∂βα̇χ

J
α −∂αα̇χJβ

)
+

4i

3
ξ̄β̇J

(
2∂αβ̇χ̄α̇I−∂αα̇χ̄β̇I

)
− 1

2
δJI

[
iJαα̇β

KξβK+iJ̄αα̇βKξ̄
β̇K+

4i

3
ξβK
(
2∂βα̇χ

K
α−∂αα̇χKβ

)
+

4i

3
ξ̄β̇K

(
2∂αβ̇χ̄α̇K−∂αα̇χ̄β̇K

)]
,

δJαα̇β
I = 2Tαα̇ββ̇ ξ̄

β̇I+
2

3

(
∂αα̇Hβ

γ+∂βα̇Hα
γ
)
ξIγ−2∂γα̇Hβ

γξIα−2∂γα̇Hα
γξIβ

−ξ̄β̇I
(

2

3
∂αα̇jββ̇−

1

3
∂βα̇jαβ̇−∂αβ̇jβα̇

)
+2ξ̄β̇J

(
2

3
∂αα̇tββ̇J

I− 1

3
∂βα̇tαβ̇J

I−∂αβ̇tβα̇J I
)
,

δJ̄αα̇β̇I =−2Tαα̇ββ̇ξ
β
I−

2

3

(
∂αα̇H̄

γ̇
β̇+∂αβ̇H̄

γ̇
α̇

)
ξ̄γ̇I+2∂αγ̇H̄β̇

γ̇ ξ̄α̇I+2∂αγ̇H̄α̇
γ̇ ξ̄β̇I

−ξβI
(

2

3
∂αα̇jββ̇−

1

3
∂αβ̇jβα̇−∂βα̇jαβ̇

)
+2ξβJ

(
2

3
∂αα̇tββ̇I

J − 1

3
∂αβ̇tβα̇I

J −∂βα̇tαβ̇IJ
)
,

δTαα̇ββ̇ =
i

4
ξγI
(
2∂γα̇Jββ̇α

I−∂αα̇Jββ̇γI
)
− i

4
ξ̄γ̇I
(
2∂αγ̇ J̄ββ̇α̇I−∂αα̇J̄ββ̇γ̇I

)
+
(
{α,α̇}↔{β, β̇}

)
. (B.4)
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These transformations obey the commutation relations[[
δξ1 , δξ2

]
, •
]

= −2i(ξα1Kξ̄
α̇K
2 − ξα2Kξ̄α̇K1 )∂αα̇ • . (B.5)

It is possible to verify that the normalization factors of the operators listed in (3.8) are

consistent with these SUSY transformations.

C One-point function of Hα
β and H̄ α̇

β̇ from Ward identities

Here we show how to fix the coefficients k1 and k2 appearing in (3.23), in terms of hW . We

do this by using superconformal Ward identities as in [24, 25].

Since the relation between k1, k2 and hW does not depend on the Poincaré section, we

choose the simplest set-up. Namely we choose flat-space and a straight Wilson line along

one of the coordinate axes, say x4. Then, the projection on the flat-space Poincaré section

is defined by the embedding vectors

PM =

(
1 + x2

2
, xm,

1− x2
2

)
, ZMk =

(
zk · x, xm,−zk · x

)
. (C.1)

In particular, the components orthogonal to the line defect are P i = xi with i = 1, 2, 3.

For this projection, the one-point function of the scalar operator O2, given in (3.27), takes

the form:

〈O2〉W =
3hW

8

1

P ◦ P =
3hW

8

1

xixi
. (C.2)

Applying the (flat-space) SUSY transformations given in appendix B, one finds that the

one-point functions of Hα
β and H̄ α̇

β̇ take the form〈
Hα

β
〉
W

= − 3ihW

4
(
xixi)2

(
xiτ

i
)
α
β ,

〈
H̄ α̇

β̇

〉
W

=
3ihW

4
(
xixi)2

(
xiτ

i
)α̇
β̇ . (C.3)

On the other hand, taking the general form (3.23), using the flat-space Poincaré sec-

tion (C.1, and extracting the components Hα
β and H̄ α̇

β̇ , we get〈
Hα

β
〉
W

= −2i(k2 − k1)(
xixi)2

(
xiτ

i
)
α
β ,

〈
H̄ α̇

β̇

〉
W

=
2i(k2 + k1)

4
(
xixi)2

(
xiτ

i
)α̇
β̇ . (C.4)

Comparing these expressions with (C.3), we obtain

k1 = 0 , k2 =
3hW

8
(C.5)

which is the condition reported in (3.24).

D Tree level computation of
〈
∂bWb

〉∣∣
b=1

In this appendix we check that
〈
∂bWb

〉∣∣
b=1

= 0 at leading order in gYM. Starting from

the Wilson loop expression (3.10) and considering the parametrization (2.3), after the

rescaling (6.1) we have〈
∂bWb

〉∣∣
b=1

=
`′(1)

dR
TrR P

〈r gYM√
2

∫
C
dϕ1 (φ+ φ̄) exp

[ ∫
C
dϕ2

(
iAϕ +

r gYM√
2

(φ+ φ̄)

)]〉
.

(D.1)

– 33 –



J
H
E
P
0
1
(
2
0
2
0
)
0
7
5

The vacuum expectation value in the right hand side of (D.1) is taken on the sphere, where

the Wilson loop is placed on the equator. The tree-level term comes from expanding the

exponential at linear order and then from using the tree level propagator of the scalar fields.

From section 5 of [58], we read that the scalar propagator on the sphere in D = 4 − 2ε

dimensions is 〈
φc(x1) φ̄

d(x2)
〉

= ∆S(x12) δ
cd (D.2)

where

∆S(x12) =
Γ(1− ε)

4π(πx212)
1−ε . (D.3)

Since a generic point on the equator is parametrized as x(ϕ) = r(cosϕ, sinϕ, 0, 0), one can

see that the tree-level term in (D.1) is proportional to the following integral∫ 2π

0
dϕ

r2Γ(1− ε)
4π
(
2πr2(1− cosϕ)2

)1−ε = −22ε−3πε−
1
2 r2ε sec(πε)Γ(1− ε)

Γ(32 − ε)Γ(ε)
= O(ε) . (D.4)

This shows that when ε → 0 the tree-level term of
〈
∂bWb

〉∣∣
b=1

= 0 vanishes for any

parametrization of the ellipsoid scales, in agreement with the general remarks outlined in

section 3.

E Useful formulæ for the field theory computations

In the following we will make use of the following integrals:

• Feynman parametrizations:

1

AαBβ
=

Γ(α+ β)

Γ(α) Γ(β)

∫ 1

0
dx

xα−1(1− x)β−1(
xA+ (1− x)B

)α+β (E.1a)

1

AαBβ
=

Γ(α+ β)

Γ(α) Γ(β)

∫ ∞
0
dy

yβ−1(
A+ yB

)α+β (E.1b)

• The one-loop momentum integral (with Euclidean signature):∫
dDq

(2π)D
1(

q2 +M2
)n =

Γ
(
n− D

2

)
(4π)

D
2 Γ(n)

(
M2
)D

2
−n

(E.2)

• The integral: ∫ ∞
0
dy yα(Ay +B)β =

Γ(−α− β − 1)Γ(α+ 1)

Γ(−β)

Bα+β+1

Aα+1
. (E.3)

With these ingredients, we can now perform the calculation of the following integral

I(ϕ) =

∫
dDk

(2π)D
1

k2 (k · v1 − δ) (k · v2 − δ)
(E.4)
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where D = 4− 2ε, and v1 and v2 are two 4-vectors such that

v1 · v1 = v2 · v2 = 1 and v1 · v2 = cosϕ . (E.5)

We follow essentially the procedure outlined in [79] (correcting a few typos).

We first use the Feynman parametrization (E.1a) to combine the two factors that are

linear in k, obtaining

I(ϕ) =

∫ 1

0
dx

∫
dDk

(2π)D
1

k2
[(
xv1 + (1− x)v2

)
· k − δ

]2 . (E.6)

Then, we use the alternative Feynman parametrization (E.1b) and get

I(ϕ) =

∫ 1

0
dx

∫ ∞
0
dy

∫
dDk

(2π)D
2y[

k2 + y
(
xv1 + (1− x)v2

)
· k − yδ

]3 (E.7)

Evaluating the integral over k, we obtain

I(ϕ) = 2

∫ 1

0
dx

∫ ∞
0
dy y

∫
dDq

(2π)D
1

(q2 +M2)3
(E.8)

with

M2 = −y
[y

4

(
x2 + (1− x)2 + 2x(1− x) cosϕ

)
+ δ
]
. (E.9)

Now we can use (E.2) and get

I(ϕ) = −(−1)−ε
Γ(1 + ε)

(4π)2−2ε

∫ 1

0
dx

∫ ∞
0
dy y−ε

[y
4

(
x2 + (1− x)2 + 2x(1− x) cosϕ

)
+ δ
]−1−ε

.

(E.10)

The integral over y can be computed using (E.3), and the result is

I(ϕ) = −(−1)−ε
Γ(2ε) Γ(1− ε) δ−2ε

(2π)2−2ε

∫ 1

0
dx

1(
x2 + (1− x)2 + 2x(1− x) cosϕ

)1−ε . (E.11)

From this expression we explicitly see the UV divergence signaled by the pole for ε → 0.

Since we are ultimately interested in the coefficient of this divergence, we have

I(ϕ) =
1

ε

[
− 1

8π2

∫ 1

0
dx

1(
x2 + (1− x)2 + 2x(1− x) cosϕ

)]+O(ε0) . (E.12)

The integral over x can be evaluated by setting

x =
1

2

(
1 + cot

ϕ

2
z
)
. (E.13)

In this way we find

I(ϕ) =
1

ε

(
− 1

8π2
ϕ

sinϕ

)
+O(ε0) . (E.14)
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