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1 Introduction

An ambitious goal in theoretical physics is to obtain exact results that are valid for all

values of parameters and couplings. This goal, however, is still out of reach for realistic

quantum field theories describing the elementary particles in our world. It is therefore

natural to study models obeying stronger symmetry constraints, such as supersymmetric

and/or conformal theories. Moreover, some progress can be achieved by considering special

regimes, like for instance the large-N limit in SU(N) gauge theories, or by restricting to

some specific sectors of observables. The hope is that the methods developed and the

results obtained in this way could improve our understanding of more realistic situations.
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A paradigmatic case, which sits at the crossroad of many approaches, is represented

by the BPS Wilson loops of the N = 4 Super-Yang-Mills (SYM) theory in four dimen-

sions. This theory has the maximum possible amount of supersymmetry allowed for

non-gravitational models; it is exactly conformal also at the quantum level, and many

sub-sectors of its observables are integrable. Moreover, it admits a holographic dual de-

scription [1] as Type IIB superstring theory on AdS5 × S5. In this theory, it is possible

to construct BPS Wilson loops which preserve part of the supersymmetry. In particu-

lar, a 1/2 BPS straight Wilson loop vanishes identically, but a circular one is non-trivial.

Its vacuum expectation value was computed in the planar limit in [2] by resumming the

rainbow diagrams that contribute to it. The result has a holographic interpretation as

the area of the surface bordered by the loop in the AdS5 × S5 background [3]. This

computation was extended to finite N in [4] where it was observed that the perturbative

expansion is captured by a Gaussian matrix model. Many extensions and generaliza-

tions have been studied in the N = 4 context with either field-theoretic or holographic

methods or through relations to integrability [5–20]. Wilson loops that preserve a sub-

group of the superconformal symmetry of the N = 4 theory are also instances [21] of a

defect conformal field theory [22–24] and have been investigated also from this point of

view [25–27].

The matrix model description of the 1/2 BPS circular Wilson loop has been derived

in [28] from the localization approach. Actually, the localization methods are valid not only

for the N = 4 SYM theory, but for any N = 2 SYM theory, in which case the resulting

matrix model is not Gaussian any longer but contains interaction terms. This has been

very useful in the study of the AdS/CFT duality in the N = 2 setting [29–32], since the

interacting matrix model allows one to study the large-N limit in an efficient way, also in

the strong coupling regime.

In this context, the localization is realized on a spherical space manifold S4, but when

the theory is conformal it also reproduces the results in flat space. In fact, it has been shown

to provide information about correlators of chiral operators [33–41] and about one-point

functions of chiral operators in presence of a Wilson loop [42]. In non-conformal cases,

one expects a conformal anomaly in relating the localization results obtained on S4 to flat

space quantities; there are however strong indications [43] that this anomaly, at least for

correlators of chiral operators, is rather mild and that the interacting matrix model still

contains a lot of information about perturbation theory in flat space. Localization also

provides exact results for important observables related to the Wilson loop, such as the

Bremsstrahlung function and the cusp anomalous dimension [44–51].

For N = 2 superconformal theories, the first check of the agreement between matrix

model predictions from localization in S4 and explicit calculations using Feynman diagrams

in R4 has been presented in [52]. Here the authors considered N = 2 SQCD with gauge

group SU(N) and 2N flavors, and explicitly showed that the terms proportional to g6 ζ(3) in

the vacuum expectation value of a circular BPS Wilson loop predicted by the Pestun matrix

model exactly matched the g6 ζ(3)-terms arising from Feynman diagrams in flat space at

three loops. In particular they performed their check by considering the difference between

the Wilson loop computed in N = 4 SYM and in N = 2 SU(N) SQCD, finding in this way

– 2 –



J
H
E
P
0
8
(
2
0
1
9
)
1
0
8

an enormous reduction in the number of Feynman diagrams to be evaluated. Focusing on

the “difference theory”, namely computing only the diagrammatic difference with respect

to N = 4 SYM, is highly convenient and indeed this method has been extensively used in

many subsequent developments in this context (see for example [41–43, 47, 48, 51, 53, 54]).

In this paper we present an extension of the work of [52] in two respects. Firstly,

we consider the vacuum expectation value of the fundamental 1/2 BPS circular loop in

conformal N = 2 SU(N) theories that are more general than SQCD, namely in theories

with matter transforming in a generic SU(N) representation subject only to the requirement

that the β-function vanishes. Secondly, we perform our calculations at one loop-order

higher than in [52], i.e. we compute the terms proportional to g8 ζ(5) at four loops. Our

motivations are several.

First of all, by considering theories with a generic matter content we can gain a bet-

ter understanding of how the matrix model diagrams are packaged color-wise. Indeed, we

show that the interaction terms in the matrix model can be expressed as the trace of the

logarithm of the fluctuation operator around the fixed points selected in the localization

computation. The color structure of such operator is that of multiple insertions of adjoint

generators in a loop where the hypermultiplets run — the matter ones contributing with

a positive sign and the adjoint ones, which would be present in the N = 4 theory, with

a negative sign. This fact indicates that the matrix model itself naturally organizes its

outcomes in terms of the “difference theory”, thus suggesting to organize in the same fash-

ion also the Feynman diagrams arising in the corresponding field-theoretic computations.

Furthermore, the matrix model also suggests that the lowest-order contributions to the

vacuum expectation value of the circular Wilson loop proportional to a given Riemann

ζ-value, namely the terms of the type g2n+2 ζ(2n − 1), are entirely due to the n-th loop

correction to a single propagator inserted in the Wilson loop in all possible ways. This is

indeed what we find up to n = 3, thus extending the result at n = 2 of [52].

By working at one loop-order higher than in [52] we can put the agreement between

the matrix model predictions and the field-theory results on a more solid ground. Indeed,

at order g6 all the numerous diagrams computed in [52] using the component formalism,

actually collapse to just two superdiagrams if one uses the N = 1 superfield formalism

in the Fermi-Feynman gauge. One of these two superdiagrams trivially vanishes since it

is proportional to the β-function coefficient, and thus the check with the matrix model

predictions reduces to the comparison of a single coefficient. On the contrary, at order

g8 even in the N = 1 superfield formalism one finds many different non-vanishing contri-

butions corresponding to superdiagrams with different topologies, different combinatorial

coefficients and different color structures. Therefore, obtaining an agreement with the

matrix model results in this case is much more challenging and not at all obvious since

many independent factors have to conspire in the right way. Moreover, differently from

what happens at three loops, at order g8 the color factors in the matrix model expressions

have a different trace structure as compared to the Feynman diagrams at four loops, and

the agreement between the two can be obtained only by using group-theoretic identities.

Dealing with a matter content in a generic representation allows us to have full control on

the color and combinatorial factors, thus avoiding accidental simplifications.
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A further motivation for our work is that being able to treat conformal N = 2 theories

with a generic matter content allows us to select special cases that exhibit a particular

behavior in the large-N limit. For instance, we consider theories in which the matter

content consists of NF hypermultiplets in the fundamental, NS in the rank-two symmetric

and NA in the rank-two anti-symmetric representations of SU(N).1 By requiring the

vanishing of the β-function coefficient one obtains five classes of theories that exist for

arbitrary N [55], one of which is the N = 2 SQCD. For two other classes we show that

the difference of the Wilson loop vacuum expectation value with respect to the N = 4

case is sub-leading in the large-N limit and thus vanishes in the planar approximation. In

fact, these two classes of theories were shown to have a holographic dual [56] of the type

AdS5 × S5/Z for an appropriate discrete group Z, which is a simple modification of the

AdS5 × S5 geometry corresponding to the N = 4 SYM theory. Since the circular Wilson

loop only sees the Anti-de Sitter factor, one should expect no deviations from the N = 4

case, and this is indeed what our results indicate.

We hope that our analysis might be useful also to study the vacuum expectation

value of a Wilson loop in a generic representation and its behavior in the limit where the

dimension of such a representation is large, along the lines recently discussed for example

in [57–59].

This paper is organized as follows. In section 2 we review the matrix model obtained

in [28] via localization, and formulate it for an N = 2 theory with gauge group SU(N)

and a generic matter content. In section 3 we first compute the quantum correction to

the “propagator” of the interacting matrix model up to three loops, and then use it to

obtain the leading terms of the vacuum expectation value of the 1/2 BPS circular Wilson

loop in the fundamental representation. We also derive the exact expressions in g and

N for the corrections proportional to ζ(3) and ζ(5) in this vacuum expectation value, and

exploit them to study the large-N limit. In section 4 we perform a perturbative field-theory

computation in the N = 2 superconformal theories at order g8 using the N = 1 superfield

formalism. By computing (super) Feynman diagrams in the “difference theory”, we show

the perfect agreement with the matrix model results. Finally in section 5 we briefly present

our conclusions.

A lot of technical material is contained in the appendices. In particular, appendix A

contains our group theory notations and conventions for SU(N), while appendix B describes

our notations and conventions regarding the spinor algebra and Grassmann variables. Ap-

pendix C describes a method to carry out the Grassmann integrations appearing in N = 1

superdiagrams with chiral/anti-chiral multiplet and vector multiplet lines. We have found

this method, which follows a different route from the use of the D-algebra proposed long

ago in [60], quite efficient in dealing with the type of diagrams involved in our computation.

Finally, in appendix D we give the details on the various three-loop diagrams contributing

at order g6 ζ(5) to the adjoint scalar propagator.

1We thank J. Russo for suggesting to us to study the case with NF = 0 and NS = NA = 1, from which

we started our investigation.
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2 The matrix model for N = 2 SYM theories

Localization techniques have been exploited to compute exactly certain observables in

N = 2 SYM theories, such as the partition function on a 4-sphere S4 or the vacuum

expectation value of BPS Wilson loops [28]. Here we consider N = 2 SYM theories with

gauge group SU(N) and matter hypermultiplets transforming in a generic representation R.

2.1 The S4 partition function

The partition function on a 4-sphere S4 with unit radius,2 computed via localization, can

be expressed as follows:

ZS4 =

∫ N∏

u=1

dau ∆(a)
∣∣Z(ia, g)

∣∣2 δ
( N∑

u=1

au

)
(2.1)

where a is a Hermitean N ×N matrix with (real) eigenvalues au (u = 1, . . . , N), ∆ is the

Vandermonde determinant

∆(a) =
N∏

u<v=1

(au − av)2 , (2.2)

and Z(ia, g) is the partition function for a gauge theory with coupling g defined on R4 with a

parametrizing the Coulomb branch. Note that in non-conformal theories the gauge coupling

g has to be interpreted as the renormalized coupling at a scale inversely proportional to

radius of the 4-sphere.

Before considering Z(ia, g) in more detail, let us remark that the integration over the

eigenvalues au in (2.1) can be rewritten simply as the integral over all components of the

Hermitean traceless matrix a, namely

ZS4 =

∫
da
∣∣Z(ia, g)

∣∣2 . (2.3)

The matrix a can be decomposed over a basis of generators ta of su(N):

a = ab tb , b = 1, . . . , N2 − 1 ; (2.4)

we will normalize these generators so that the index of the fundamental representation

equals 1/2:

tr tatb =
1

2
δab . (2.5)

In appendix A we collect our group theory conventions and other useful formulas. The

integration measure is then simply proportional to
∏
b da

b.

The R4 partition function Z(ia, g) can be written as

Z = Ztree Z1−loop Zinst . (2.6)

2The dependence on the radius R can be trivially recovered by replacing a with Ra.
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In perturbation theory, we can neglect the instanton contributions and put Zinst = 1. The

tree-level term is given by
∣∣Ztree

∣∣2 = e
− 8π2

g2
tr a2

, (2.7)

providing a free matrix model with a Gaussian term. The 1-loop part contains interaction

terms, which we write as follows:

∣∣Z1−loop

∣∣2 ≡ e−Ŝ(a) . (2.8)

The matrix model corresponding to the N = 4 SYM theory has Ŝ(a) = 0 and is purely

Gaussian. For N = 2 SYM theories, instead, there are interaction terms. In general,

let us denote by a the N -dimensional vector of components au, and by W (R) the set of

the weights w of the representation R and by W (adj) is the set of weights of the adjoint

representation. Then,
∣∣Z1−loop

∣∣2 =

∏
w∈W (adj)H(iw · a)
∏

w∈W (R)H(iw · a)
) , (2.9)

where

H(x) = G(1 + x)G(1− x) (2.10)

and G is the Barnes G-function.

2.2 The interaction action

Let us now consider the interaction action Ŝ(a). From (2.8) it follows that

Ŝ(a) =
∑

w∈W (R)

logH(iw · a) −
∑

w∈W (adj)

logH(iw · a)

= TrR logH(ia)− Tradj logH(ia) = Tr′R logH(ia) , (2.11)

where in the last step we introduced the notation

Tr′R • = TrR • − Tradj • . (2.12)

This indeed vanishes for the N = 4 SYM theory, where the representation R of the

hypermultiplets is the adjoint. For N = 2 models, this combination of traces is non-

vanishing and precisely accounts for the matter content of the “difference theory” which is

often used in field theory computations [52], where one removes from the N = 4 result the

diagrams with the adjoint hypermultiplets running in internal lines and replaces them with

the corresponding diagrams involving the matter hypermultiplets in the representation R.

Using the properties of the Barnes G-function, one can prove that

logH(x) = −(1 + γE)x2 −
∞∑

n=1

ζ(2n+ 1)

n+ 1
x2n+2 (2.13)

where ζ(n) are the Riemann ζ-values. Then, we can rewrite (2.11) as follows

Ŝ(a) = (1 + γE) Tr′R a
2 +

∞∑

n=2

(−1)n
ζ(2n− 1)

n− 1
Tr′R a

2n . (2.14)

– 6 –
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With the rescaling

a→
√

g2

8π2
a , (2.15)

we bring the partition function on S4 to the form

ZS4 =

(
g2

8π2

)N2−1
2
∫
da e−tr a2−S(a) , (2.16)

where

S(a) = Tr′R logH
(

i

√
g2

8π2
a
)

=
g2

8π2
(1 + γE) Tr′R a

2 −
(
g2

8π2

)2
ζ(3)

2
Tr′R a

4 +

(
g2

8π2

)3
ζ(5)

3
Tr′R a

6 + . . . (2.17)

The overall g-dependent pre-factor in (2.16) is irrelevant in computing matrix model corre-

lators, and thus can be discarded. Using the expansion (2.4), the traces appearing in S(a)

can be expressed as

Tr′R a
2k = C ′(b1...bk) a

b1 . . . abk , (2.18)

where

C ′b1...bn = Tr′R Tb1 . . . Tbn . (2.19)

These tensors are cyclic by definition. In particular, we have

C ′b1b2 = (iR − iadj) δb1b2 = (iR −N) δb1b2 = −β0

2
δb1b2 (2.20)

where iR is the index of the representation R and β0 the one-loop coefficient of the

β-function of the corresponding N = 2 gauge theory. In superconformal models, one

has β0 = 0. This implies that Tr′R a
2 = 0 so that the interaction action S(a) starts at order

g4, i.e. at two loops.

2.3 Expectation values in the interacting matrix model

Other observables of the N = 2 gauge theory, beside its partition function on S4, can

be evaluated via localization and mapped to suitable expectation values in this matrix

model. For any observable represented by a function f(a) in the matrix model, its vacuum

expectation value is

〈
f(a)

〉
=

∫
da e− tr a2−S(a) f(a)
∫
da e− tr a2−S(a)

=

〈
e−S(a) f(a)

〉
0

〈
e−S(a)

〉
0

, (2.21)

where the subscript 0 in the right-hand-side indicates that the vacuum expectation value

is evaluated in the free Gaussian model describing the N = 4 theory. These free vacuum

– 7 –
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expectation values can be computed in a straightforward way via Wick’s theorem in terms

of the propagator3

〈
ab ac

〉
0

= δbc . (2.22)

As discussed in [41–43], using the basic contraction (2.22) and the so-called fusion/fission

relations for traces in the fundamental representation of SU(N), it is possible to recursively

evaluate the quantities

tk1,k2,··· =
〈

tr ak1 tr ak2 · · ·
〉

0
(2.23)

and obtain explicit expressions for generic values of k1, k2, . . ..

To compute perturbatively the vacuum expectation value
〈
f(a)

〉
in the interacting the-

ory, one starts from the right-hand-side of (2.21) and expands the action S(a) as in (2.17).

Proceeding in this way, for conformal theories where the g2-term vanishes, one gets

〈
f(a)

〉
=
〈
f(a)

〉
0

+

(
g2

8π2

)2
ζ(3)

2

〈
f(a) Tr′R a

4
〉

0,c
−
(
g2

8π2

)3
ζ(5)

3

〈
f(a) Tr′R a

6
〉

0,c

+ . . . , (2.24)

where the notation 〈 〉0,c stands for the connected part of a free correlator, namely

〈
f(a) g(a)

〉
0,c

=
〈
f(a) g(a)

〉
0
−
〈
f(a)

〉
0

〈
g(a)

〉
0
. (2.25)

We may regard (2.24) as an expansion in “trascendentality”, in the sense that each term

in the sum has a given power of Riemann ζ-values since it comes from the expansion of the

exponential of the interaction action (2.17). For example the second term is the only one

proportional to ζ(3), the third term is the only one proportional to ζ(5), while the ellipses

stand for terms proportional to ζ(7), ζ(3)2 and so on.

Often f(a) is a “gauge-invariant” quantity, expressed in terms of traces of powers of

a in some representations. Also the quantities Tr′R a
2k are traces of this type. As shown

in appendix A, relying on the Frobenius theorem it is possible to express such traces in

terms of traces in the fundamental representation. At this point, the vacuum expectation

value (2.24) is reduced to a combinations of the quantities tk1,k2,... introduced in (2.23).

This is the computational strategy we adopt in the following sections.

2.4 A class of conformal N = 2 theories

Let us consider a class of theories with NF matter hypermultiplets transforming in the

fundamental representation, NS in the symmetric and NA in the anti-symmetric represen-

tation of order 2. This corresponds to taking

R = NF ⊕NS ⊕NA . (2.26)

The traces Tr′R a
2k appearing in the interaction action S(a) can be re-expressed in terms

of traces in the fundamental representation, as discussed in appendix A.

3We normalize the flat measure as da =
∏
b

(
dab/
√

2π
)
, so that

∫
da e− tr a2 = 1. In this way the

contraction (2.22) immediately follows.

– 8 –
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theory NF NS NA

A 2N 0 0

B N − 2 1 0

C N + 2 0 1

D 4 0 2

E 0 1 1

Table 1. The five families of N = 2 superconformal theories with SU(N) gauge group and matter

in fundamental, symmetric and anti-symmetric representations.

For example, for k = 1 one has

Tr′R a
2 = 2 (iR − iadj) tr a2 = −β0 tr a2 , (2.27)

with

β0 = 2N −NF −NS(N + 2)−NA(N − 2) . (2.28)

Superconformal theories must have β0 = 0. It is easy to see that imposing this condition

leads to five families of N = 2 superconformal field theories with gauge group SU(N), and

matter in the fundamental, symmetric or anti-symmetric representations. They were iden-

tified long ago in [55] and recently reconsidered in [32, 61]. They are displayed in table 1.

Theory A is the N = 2 conformal SQCD which is often considered as the prototypical

example of a N = 2 superconformal theory. On the other hand, theories D and E are

quite interesting: for these superconformal models a holographic dual of the form AdS5 ×
S5/Z with an appropriate discrete group Z has been identified [56]. We will discuss some

properties of these theories in the following.

For higher traces with k > 1, one finds (see again appendix A for details)

Tr′R a
2k =

1

2

2k−2∑

`=2

(
2k

`

)(
NS +NA − 2 (−1)`

)
tr a` tr a2k−`

+
((

2k−1 − 2
)

(NS −NA)− β0

)
tr a2k . (2.29)

Inserting this into the expansion (2.17) we can express the interaction action in terms of

traces in the fundamental representation. For the superconformal theories of table 1 we

find the results displayed in table 2.

Notice that for theory E the quartic term vanishes and thus in this case the effects of the

interactions appear for the first time at order g6, i.e. at three loops, and are proportional to

ζ(5). This feature, which has been recently pointed out also in [61], is a simple consequence

of the properties of the quartic trace in a representation R formed by one symmetric and

one anti-symmetric representation. Altogether, the matter hypermultiplets fill a generic

N ×N matrix; this is to be compared with the N = 4 case in the hypermultiplets are in

the adjoint representation, which is equivalent to N × N minus one singlet. The strong

similarity of the two representations explains why theory E is the N = 2 model which is

more closely related to the N = 4 SYM theory. For theory D, instead, the quartic term is a

– 9 –



J
H
E
P
0
8
(
2
0
1
9
)
1
0
8

theory Tr′R a
4 Tr′R a

6

A 6
(
tr a2

)2
10
[
2
(
tr a3

)2 − 3 tr a4 tr a2
]

B 3
[(

tr a2
)2 − 2 tr a4

]
15
[
2
(
tr a3

)2 − tr a4 tr a2 + 2 tr a6
]

C 3
[(

tr a2
)2

+ 2 tr a4
]

15
[
2
(
tr a3

)2 − tr a4 tr a2 − 2 tr a6
]

D 12 tr a4 20
[
2
(
tr a3

)2 − 3 tr a6
]

E 0 40
(
tr a3

)2

Table 2. The quartic and sextic interaction terms in the action S(a) for the five families of

conformal theories defined in table 1.

single fundamental trace and thus is simpler than in the other theories. In the following we

will see that these features of theories D and E have a bearing on their large-N behavior.

3 Propagator and Wilson loops in superconformal matrix models

We now discuss in detail two specific applications of the formula (2.24): first the “propa-

gator” 〈ab ac〉 and later the 1/2 BPS circular Wilson loops W(a) in the fundamental rep-

resentation.

3.1 The propagator

If in (2.24) we take f(a) = ab ac, we get

〈
ab ac

〉
=
〈
ab ac

〉
0

+

(
g2

8π2

)2
ζ(3)

2
C ′(d1d2d3d4)〈ab ac ad1 ad2 ad3 ad4〉0,c

−
(
g2

8π2

)3
ζ(5)

3
C ′(d1d2d3d4d5d6)〈ab ac ad1 ad2 ad3 ad4 ad5 ad6〉0,c + . . . , (3.1)

where inside each connected correlator we cannot contract ab with ac. Doing all legitimate

contractions we obtain

〈ab ac〉 = δbc +

(
g2

8π2

)2

ζ(3)× 6C ′(bcdd) −
(
g2

8π2

)3

ζ(5)× 30C ′(bcddee) + . . . . (3.2)

The above contracted tensors are proportional to δbc, and thus if define

6C ′(bcdd) = C′4 δbc , 30C ′(bcddee) = C′6 δbc , (3.3)

we can rewrite (3.2) as

〈
ab ac

〉
= δbc

(
1 + Π

)
(3.4)

with

Π =

(
g2

8π2

)2

ζ(3) C′4 −
(
g2

8π2

)3

ζ(5) C′6 + . . . . (3.5)
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theory C′4 C′6
A −3(N2 + 1) −15(N2+1)(2N2−1)

2N

B −3(N+1)(N−2)(N−3)
2N −15(N−2)(2N4−6N3−15N2+15)

4N2

C −3(N−1)(N+2)(N+3)
2N −15(N+2)(2N4+6N3−15N2+15)

4N2

D −6(2N2−3)
N −15(5N4−2N3−15N2+8N+15)

N2

E 0 30(N2−4)
N

Table 3. The coefficients C′4 and C′6 for the five families of conformal theories defined in table 1.

Using the expressions of the tensors C ′ for the five families of superconformal SU(N) theories

that can be obtained from the formulæ in appendix A with the help of Form Tracer [62],

one finds

C′4 =
6C ′(ccdd)

N2 − 1
= 3

[
(NS +NA − 2)

N2 + 1

2
+ (NS −NA)

2N2 − 3

N

]
,

C′6 =
30C ′(ccddee)

N2 − 1
= 15

[
(NS +NA − 2)

2N4 + 5N2 − 17

4N

+ (NS −NA)
5(N4 − 3N2 + 3)

2N2
+

2(N2 − 4)

N

]
.

(3.6)

These coefficients are tabulated in table 3.

For the comparison with perturbative field theory calculations presented in section 4,

it is useful to make explicit the symmetrization of the C ′-tensors appearing in (3.2). For

the 4-index tensor, we have

6C ′(bcdd) = 2
(
C ′bcdd + C ′bdcd + C ′bddc

)
. (3.7)

Indeed, due to the cyclic property and the fact that two indices are identified, a subgroup

Z4×Z2 of permutations leaves C ′bcdd invariant and one has to average only over the 4!/8 = 3

permutations in the coset with respect to this stability subgroup. In a similar way, for the

6-index tensor we have

30C ′(bcddee) = 2
(
C ′bcddee + C ′bcdede + C ′bcdeed + C ′bdcdee + C ′bdcede

+ C ′bdceed + C ′bddcee + C ′bdecde + C ′bdeced + C ′bddece

+ C ′bdedce + C ′bdeecd + C ′bddeec + C ′bdedec + C ′bdeedc
)
. (3.8)

In this case, the stability subgroup is Z6 × Z2 × Z2 × Z2 and the coset has 6!/48 = 15

elements.

We would like to remark that even if we have considered theories with SU(N) gauge

group and matter in the fundamental, symmetric and anti-symmetric representations, the

color tensors C ′b1...bn in (2.19) and the corresponding coefficients C′n can be defined also
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for other representations of SU(N) (or U(N)) using the Frobenius theorem, as indicated

in appendix A.1, and also for other gauge groups. Thus, the structure of the propagator

corrections in (3.4) is very general.

3.2 Wilson loops

As a second example, we consider the 1/2 BPS circular Wilson loop in the fundamental

representation. If this operator is inserted on the equator of S4, in the matrix model we

can represent it by the operator [28]

W(a) =
1

N
tr exp

( g√
2
a
)

=
1

N

∞∑

k=0

1

k!

gk

2
k
2

tr ak . (3.9)

Its vacuum expectation value is computed starting from (2.24), following the strategy

outlined in section 2.3. We write

∆W ≡
〈
W(a)

〉
−
〈
W(a)

〉
0

= X3 + X5 + . . . , (3.10)

where

X3 =

(
g2

8π2

)2
ζ(3)

2

〈
W(a) Tr′R a

4
〉

0,c
, (3.11)

X5 = −
(
g2

8π2

)3
ζ(5)

3

〈
W(a) Tr′R a

6
〉

0,c
, (3.12)

and so on. From these expressions it is easy to realize that for each Riemann ζ-value (or

product thereof) the term with the lowest power of g in ∆W arises from the quadratic

term in the expansion of the Wilson loop operator. Indeed, we have

X3 =

(
g2

8π2

)2
ζ(3)

2

g2

4N

〈
tr a2 Tr′R a

4
〉

0,c
+O(g8)

=
g6 ζ(3)

512π4

N2 − 1

N
C′4 +O(g8) (3.13)

where C′4 is the coefficient of the two-loop correction of the “propagator” of the matrix

model defined in (3.6). This result is valid for any superconformal theory, and in particular

for the five families introduced in section 2.4. Clearly, for theory E the correction is zero;

actually the whole X3 vanishes in this case. In a similar way we find

X5 = −
(
g2

8π2

)3
ζ(5)

3

g2

4N

〈
tr a2 Tr′R a

6
〉

0,c
+O(g10)

= − g
8 ζ(5)

4096π6

N2 − 1

N
C′6 +O(g10) (3.14)

where C′6 is the three-loop correction of the matrix model “propagator”. Combining (3.13)

and (3.14) we see that at the lowest orders in g the difference of the vacuum expectation

value of the Wilson loop with respect to the N = 4 expression is given by

∆W =
N2 − 1

8N
g2 Π + . . . (3.15)
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where Π is the quantum correction to the “propagator” given in (3.5). In the following

sections we will prove that these results are in perfect agreement with perturbative field

theory calculations using ordinary (super) Feynman diagrams.

Actually, as explained in [42], within the matrix model it is possible to evaluate X3,

X5 and so on, without making any expansion in g. To obtain these exact results, one

has to write the traces Tr′R a
2k in terms of the traces in the fundamental representation

by means of (2.29). In this way everything is reduced to combinations of the quantities

tk1,k2,... defined in (2.23), which in turn can be evaluated in an algorithmic way using the

fusion/fission identities [41]. In the end, this procedure allows one to express the result

in terms of the exact vacuum expectation value of the Wilson loop in the N = 4 theory

given by

W (g) ≡
〈
W(a)

〉
0

=

∞∑

k=0

1

k!

gk

2
k
2

tk . (3.16)

This expression can be resummed to obtain [2, 4]:

W (g) =
1

N
L1
N−1

(
−g

2

4

)
exp

[
g2

8

(
1− 1

N

)]
, (3.17)

where Lmn (x) is the generalized Laguerre polynomial of degree n. Applying this procedure

to the five families of superconformal theories introduced in section 2.4, we find

X3 =

(
g2

8π2

)2
3 ζ(3)

16N2

[
2
(
NS +NA − 2

)
N2
((

2N2 + 1
)
g ∂gW (g) + g2 ∂2

gW (g)
)

+
(
NS −NA

)((
N2 − 1

)
g2W (g) +

(
g2 + 8N3 − 12N

)
g ∂gW (g)

− 4Ng2 ∂2
gW (g) + 16N2 g ∂3

gW (g)
)]
. (3.18)

Expanding in g, it is easy to check the validity of (3.13). The case of theory A, namely

NS = NA = 0, was already described in [42]. For theory E, as we have already remarked,

X3 = 0 since Tr′R a
4 = 0. Therefore, in this case the first correction with respect to the

N = 4 result for the Wilson loop is X5, which turns out to be

X5

∣∣
E

= −
(
g2

8π2

)3
5 ζ(5)

12N2

[(
N4 + 5N2 − 6

)
g2W (g)

+
(
2g2N2 + 6g2 − 8N3 − 48N

)
g ∂gW (g)

+
(
g2 − 8N3 − 48N

)
g2 ∂2

gW (g)

− 8N
(
g2 − 10N

)
g ∂3

gW (g) + 16N2 g2 ∂4
gW (g)

]
. (3.19)

Similar formulæ can be easily obtained for the other families of superconformal theories.

We have derived them but we do not report their explicit expressions since for theories

A, B, C, and D the leading term in the difference with respect to the N = 4 result is

given by X3.
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We stress once more that this procedure allows one to obtain in an algorithmic way the

exact expression in g and N of any term of the vacuum expectation value of the circular

Wilson loop with a fixed structure of Riemann ζ-values. This fact will now be used to

study the behavior of the matrix model in the large-N limit.

3.3 The large-N limit

The large-N limit is defined by taking N →∞ and keeping the ’t Hooft coupling

λ = g2N (3.20)

fixed. In this limit the perturbative correction Π to the “propagator” given in (3.5) becomes

Π = (NS+NA−2)

(
3ζ (3) λ2

128π4
− 15ζ (5) λ3

1024π6
+O

(
λ4
))

+(NS−NA)

(
3ζ (3) λ2

32π4
− 75ζ (5) λ3

1024π6
+O

(
λ4
)) 1

N
(3.21)

+

[
(NS+NA−2)

(
3ζ (3) λ2

128π4
− 75ζ (5) λ3

2048π6

)
− 15ζ (5) λ3

256π6
+O

(
λ4
)] 1

N2
+O

(
1

N3

)
.

From this expression we easily see that in the planar limit Π is non-zero for theories A, B

and C, whereas it vanishes for theories D and E:

lim
N→∞

Π
∣∣
D or E

= 0 . (3.22)

In particular for theory D the correction to the “propagator” goes like 1/N , whereas for

theory E it goes like 1/N2:

Π
∣∣
D

= −
(

3ζ (3) λ2

16π4
− 75ζ (5) λ3

512π6
+O

(
λ4
)) 1

N
+O

(
1

N2

)
, (3.23)

Π
∣∣
E

= −
(

15ζ (5) λ3

256π6
+O

(
λ4
)) 1

N2
+O

(
1

N3

)
. (3.24)

Therefore, in the planar limit, the “propagator” of the matrix model for these two families

is identical to that of the free matrix model describing the N = 4 SYM theory.

Let us now consider the vacuum expectation value of the circular Wilson loop. Taking

the large-N limit in the N = 4 expression (3.17) one obtains [2]

lim
N→∞

W
(√

λ/N
)

=
2√
λ
I1

(√
λ
)

(3.25)

where I` is the modified Bessel function of the first kind.

Using this result in the ζ(3)-correction (3.18), we get

X3 = (NS +NA − 2)
3ζ (3) λ2

128π4
I2

(√
λ
)

+O

(
1

N

)
. (3.26)
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This is a generalization of the formula obtained in [42] for the SQCD theory. With the

same procedure we have also derived the planar limit of the ζ(5)- correction, finding

X5 = − (NS +NA − 2)
5ζ (5) λ3

1024π6

(
3I2

(√
λ
)

+ I4

(√
λ
))

+O

(
1

N

)
. (3.27)

These results indicate that for theories A, B and C the vacuum expectation value of the

circular Wilson loop in the planar limit is different from the one of the N = 4 SYM theory.

On the other hand, for theories D and E this difference vanishes, namely

lim
N→∞

∆W
∣∣
D or E

= 0 (3.28)

in analogy with the “propagator” result (3.22). Working out the details at the next-to-

leading order for theory D, we find

∆W
∣∣
D

= −
[

3ζ(3)λ2

32π4

(
2I2

(√
λ
)

+ I4

(√
λ
))

(3.29)

− 15ζ(5)λ3

256π6

(
5I2

(√
λ
)

+ 4I4

(√
λ
)

+ I6

(√
λ
))

+ . . .

]
1

N
+O

( 1

N2

)

where the ellipses stand for terms with higher Riemann ζ-values (or product thereof).

Similarly, at the next-to-next-to-leading order for theory E, we find

∆W
∣∣
E

= −
(

15ζ(5)λ7/2

1024π6
I1

(√
λ
)

+ . . .

)
1

N2
+O

( 1

N3

)
. (3.30)

Our findings have been obtained with a weak-coupling analysis at small λ. They are,

however, in agreement with the strong-coupling results at large λ presented in [32], in the

sense that also at strong coupling the vacuum expectation value of the circular Wilson

loop in the planar limit is different from that of the N = 4 SYM theory for theories A,

B and C, while it is the same for theories D and E. This observation suggests that also

the interpolating function between weak and strong coupling shares the same features for

the various theories. The fact that for theories D and E the vacuum expectation value

of the circular Wilson loop is identical to that of the N = 4 SYM theory in the planar

limit is also in agreement with the fact that the holographic dual of theories D and E is

of the form AdS5 × S5/Z with an appropriate discrete group Z [56]. Indeed, for the 1/2

BPS circular Wilson loop, the relevant part of the geometry is the Anti-de Sitter factor

AdS5, which is the same one that appears in the famous AdS5 × S5 holographic dual of

the N = 4 SYM theory [1]. It would be interesting to identify other observables that have

this property in the planar limit and check the holographic correspondence, and also to

find which observables of the theories D and E instead feel the difference with the N = 4

SYM theory in the planar limit. Investigating which sectors of our N = 2 theories are

planar equivalent to those of the N = 4 SYM theory would be useful to better clarify the

relations among the various models and also to understand to which extent the arguments

discussed for example in [63] in the so-called orientifold models can be applied to our case.

We leave however this issue for future work.
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We conclude by observing that the coefficients
(
NS+NA−2

)
and

(
NS−NA

)
appearing

in the planar limit results (see, for example, (3.21), (3.26) and (3.27)) have an interest-

ing meaning in terms of the central charges of the N = 2 superconformal gauge theories

corresponding to the matrix model. Indeed, taking into account the matter content corre-

sponding to the representation (2.26) and using the formulæ for the c and a central charges

derived in [64], we find

c = − 1

24

((
NS +NA − 8

)
N2 + 3

(
NS −NA

)
N + 4

)
,

a = − 1

48

((
NS +NA − 14

)
N2 + 3

(
NS −NA

)
N + 10

)
,

(3.31)

implying that

48(a− c)
N2

=
(
NS +NA − 2

)
+

3
(
NS −NA)

N
− 2

N2
(3.32)

Using this, we can rewrite our results for the Wilson loop in the following way

∆W =
a− c
N2

[
9ζ(3)λ2

8π4
I2

(√
λ
)
− 15ζ(5)λ3

64π6

(
3I2

(√
λ
)

+ I4

(√
λ
))

+ . . .

]
+O

( 1

N

)
. (3.33)

It would be nice to have an interpretation of this formula, and in particular of its prefactor,

based on general principles.

4 Field theory checks

In this section we consider the field-theoretic counterpart of the computations we performed

in section 3 using the matrix model.

4.1 Action and Feynman rules

We compute Feynman superdiagrams, working in N = 1 superspace formalism and con-

sidering the diagrammatic difference of the N = 2 SYM theory with respect to the N = 4

theory. We now briefly review these techniques; this serves also to explain our conventions.

Our N = 2 theory contains both gauge fields, organized in an N = 2 vector multiplet,

and matter fields, organized in hypermultiplets. In terms of N = 1 superfields the N = 2

vector multiplet contains a vector superfield V and a chiral superfield Φ, both in the adjoint

representation of SU(N). The adjoint complex scalar ϕ of the N = 2 gauge multiplet is

the lowest component of the chiral superfield Φ, while the gauge field Aµ is the
(
θ̄σµθ

)
-

component of V (we refer to appendix B for our conventions on spinors, Pauli matrices

and Grassmann variables).

In the Fermi-Feynman gauge the part of the action which only involves these adjoint

fields is

Sgauge =

∫
d4x d2θ d2θ̄

(
− V a�V a + Φ†aΦa +

i

4
gfabc

[
D̄2(DαV a)

]
V b (DαV

c)

− 1

8
g2fabef ecd V a(DαV b)(D̄2V c)(DαV

d)

+ 2 igfabc Φ†aV bΦc − 2g2fabef ecd Φ†aV bV cΦd + · · ·
)

(4.1)
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Φ†Φ− propagator
θ1 θ2

ba
= δab e−θ1 p θ̄1 − θ2 p θ̄2 + 2θ1 p θ̄2 1

V V − propagator
θ1 θ2

a b
= − δab

b

a

c

= 2i gfabc = i g

d

a

= −2g2fabef ecd

c

b

Figure 1. Feynman rules for the gauge part of the N = 2 theory that are relevant for our

calculations.

where the dots stand for higher order vertices of the schematic form gk Φ†V kΦ with k ≥ 3.

Here fabc are the structure constants of SU(N) (see appendix A for our group-theory

conventions). The Feynman rules following from this action are displayed in figure 1.

An N = 2 hypermultiplet in a representation R contains two N = 1 chiral multiplets,

Q transforming in the representation R and Q̃ transforming in the conjugate representation

R̄; we denote by Qu, u = 1, . . . dR and Q̃u their components.4 The action for these matter

fields, again in the Fermi-Feynman gauge, is

Smatter =

∫
d4x d2θ d2θ̄

(
Q†uQu + 2g Q†uV a(T a) vu Qv + 2g2Q†uV a V b(T a T b) vu Qv

+ Q̃u Q̃†u − 2g Q̃u V a(T a) vu Q̃
†
v + 2g2 Q̃uV a V b(T a T b) vu Q̃

†
v + · · ·

+ i
√

2g Q̃uΦa(T a) vuQv θ̄
2 − i
√

2g Q†uΦ† a(T a) vu Q̃
†
v θ

2
)

(4.2)

where by T a we denote the SU(N) generators in the representation R. The Feynman rules

that are derived from this action are illustrated in figure 2.

Therefore, the total action for the N = 2 theory is simply

S = Sgauge + Smatter . (4.3)

The N = 4 SYM theory can be seen as a particular N = 2 theory containing a vector

multiplet and an hypermultiplet, both in the adjoint representation of the gauge group.

4This is a compact notation which encompasses also the cases in which R is reducible, and in particular

the cases in which it contains several copies of a given irreducible representation. For instance, if R is the

direct sum of NF fundamental representations, we use here an index u = 1, . . . NFN , instead of a double

index, m, i with m = 1, . . . n for the color and i = 1, . . . NF for the flavor.
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Q†Q− propagator
θ1 θ2

u v
= δuv e

−θ1 p θ̄1 − θ2 p θ̄2 + 2θ1 p θ̄2 1

Q̃Q̃† − propagator
θ1 θ2

u v
= δuv e

−θ1 p θ̄1 − θ2 p θ̄2 + 2θ1 p θ̄2 1

v

u

a

= ig
√

u

v

a

= −ig
√

v

u

a

= 2g(T a) v
u

u

v

a

= −2g(T a) v
u

v

u

= 2g2(T a T b) v
u

a

b

u

v

= 2g2(T a T b) v
u

a

b

Figure 2. Feynman rules involving the matter superfields that are relevant for our calculations.

So it corresponds simply to the case in which R is the adjoint representation. In terms of

N = 1 superfields, beside V and Φ, it contains also two adjoint chiral multiplets that we

call H and H̃ (note that the adjoint representation is self-conjugate). Their components

are denoted as Ha, H̃a, with a = 1, . . . N2 − 1, and their action SH has the same structure

as Smatter with Qu and Q̃u replaced by Ha and H̃a and the generator components (Ta)
v
u

by the structure constants ifabc. Thus we can write

SN=4 = Sgauge + SH . (4.4)

Doing the same substitutions on the Feynman rules of figure 2 yields the Feynman rules

for the H and H̃ superfields.

From (4.3) and (4.4) it is easy to realize that the total action of our N = 2 theory can

be written as

S = SN=4 − SH + Smatter . (4.5)

Actually, given any observable A of the N = 2 theory, which also exists in the N = 4

theory, we can write

∆A = A−AN=4 = Amatter −AH . (4.6)

Thus, if we just compute the difference with respect to the N = 4 result, we have to

consider only diagrams where the hypermultiplet fields, either of the Q, Q̃ type or of the
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H, H̃ type, propagate in the internal lines, and then consider the difference between the

(Q, Q̃) and the (H, H̃) diagrams. This procedure, which was originally used in [52], reduces

in a significant way the number of diagrams to be computed. Moreover, as we remarked

in section 2.2, it is suggested by the structure of the matrix model.

We will apply this method to explicitly evaluate by means of Feynman superdiagrams

two quantities: the propagator of the scalar ϕ and the vacuum expectation value of the

1/2 BPS circular Wilson loop. From now on we assume that our theory is conformal at

the quantum level, namely that the β-function coefficient β0 vanishes. This amounts to

ask that the index of the representation R be equal to N , see (2.20).

4.2 The scalar propagator

The tree level propagator for the adjoint scalar field ϕ of the vector multiplet can be

extracted from the propagator of the superfield Φ given in the first line of figure 2 by

imposing θ1 = θ2 = 0:

∆bc
(0)(q) =

δbc

q2
. (4.7)

Since we consider conformal N = 2 theories, the quantum corrected propagator will depend

on the momentum only through the factor 1/q2, and by gauge symmetry it can only be

proportional to δbc. So we will have

∆bc(q) =
δbc

q2

(
1 + Π

)
(4.8)

where Π is a g-dependent constant describing the effect of the perturbative corrections.

This constant should be captured by the matrix model and thus should be the same as the

quantity Π defined in (3.4). We will now check explicitly that this is indeed the case, up

to the three-loop order corrections proportional to ζ(5).

One loop. At order g2 the first diagram we have to consider is

b c

Q

Q̃

q q

−k

k − q

3 4
1 2

= 2g2 × TrR(T bT c)×
∫

ddk

(2π)d
1

(q2)2

1

k2(k − q)2
Z(k, q) .

(4.9)

Here, and in all following diagrams, we adopt the notation explained in detail in appendix D

(see in particular (D.1) and the following sentences): we write the diagram as the product

of a normalization factor, 2g2 in this case, which takes into account the combinatoric factor

and the strength of the vertices, a color factor, and an integral over the internal momenta.

The factor Z(k, q) is the result of the integration over the Grassmann variables at each

– 19 –



J
H
E
P
0
8
(
2
0
1
9
)
1
0
8

b c

− =

b bc c

TrR(T bT c) Tradj(T
bT c) Tr′R(T

bT c) = C ′
bc

Q

Q̃

H

H̃

Figure 3. One-loop correction to Φ propagator in the difference theory.

internal vertex5 and, according to the rules in figures 1 and 2 reads

Z(k, q) =

∫
d4θ3 d

4θ4 (θ3)2(θ̄4)2 exp
(
− 2 θ4 q θ̄3

)
= −q2 . (4.10)

The momentum integral in (4.9) is divergent for d → 4; however in the difference theory

we have to subtract an identical diagram in which the adjoint superfields H and H̃ run in

the loop instead of Q and Q̃. This diagram has the same expression except for the color

factor which is now given by Tradj(T
bT c). The difference of the two diagrams is therefore

proportional to

TrR(T bT c)− Tradj(T
bT c) = Tr′R(T bT c) = C ′bc . (4.11)

From now on, we will use the graphical notation introduced in figure 3, according to which a

hypermultiplet loop stands for the difference between the (Q, Q̃) and the (H, H̃) diagrams,

with a color factor that is directly given by a primed trace.

As already stated in (2.20), the color factor (4.11) for the one-loop correction, being

proportional to the β0 coefficient, vanishes for conformal theories. Thus the constant Π

in (4.8) starts at order g4 and all diagrams including the one-loop correction to the Φ

propagator as a sub-diagram vanish.

Building blocks for higher order diagrams. Let us now consider higher order dia-

grams in the difference theory. Similarly to what happens at one-loop as shown in figure 3,

the contributions of the (Q, Q̃) and (H, H̃) hypermultiplets always have a color factor

that contains a “primed” trace of generators, i.e. they contain the tensor C ′b1...bn defined

in (2.19). We will use the symbol C ′(n) to denote such a tensor when we do not need to

specify explicitly its n indices. Notice that, according to the Feynman rules, each insertion

of a generator on the hypermultiplet loop carries a factor of g, so that the color factor C ′(n)

is always accompanied by a factor of gn.

In the difference theory all diagrams up to order g6 can be formed using the building

blocks depicted in figure 4, and suitably contracting the adjoint lines, corresponding to V

or Φ propagators, inserted in the loops.

As a matter of fact, we can also have quartic vertices with two gluon lines inserted in the

same point along the hypermultiplet loop, each of which comes with a factor of g2 and two

5The Grassmann variables in the external points 1 and 2 are set to zero to pick up the lowest component

ϕ of the superfield, namely we have θ1 = θ̄2 = 0. Note that if we do not do this and consider the propagator

of the full superfield Φ the color factor remains the same.
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C
′
(3) C

′
(4) C

′
(5) C

′
(6)

a a a
a

b b b b

c

c
c

cd

d d
e

e

f

a, µ a b a b

+ =

b, ν

Figure 4. Each building block is accompanied by its color coefficient of the type C ′(n). Here we

used a generic dashed lines for hypermultiplets loops. In reality some part of the loop should be

dashed and some dotted, in accordance with the Feynman rules. The wiggled/straight line stands

for V or Φ propagators, as explained in the second row of the figure.

= + = 0

Figure 5. The one-loop correction to hypermultiplet propagator vanishes.

generators. However, for the purpose of identifying the color factors, these contributions

do not substantially differ from those produced by two separate insertions. Therefore, the

possible color structures that occur up to the order g6 can all be derived from the diagrams

in figure 4. Organizing the Feynman diagrams according to their color coefficients C ′(n) in

the way we have outlined facilitates the comparison with the matrix model.

In constructing higher order diagrams we exploit a further simplification: in N = 2

theories the one-loop correction to any hypermultiplet propagator vanishes. This is illus-

trated in figure 5. Such one-loop corrections cannot therefore appear as sub-diagrams of

higher loop diagrams.

Two loops. At order g4 there are two classes of diagrams that may contribute, whose

color coefficients are proportional to C ′(3) or to C ′(4). The diagrams proportional to g3C ′(3)

always contain also an adjoint vertex proportional to g with which they are contracted.

This is the case represented on the left in figure 6. However, due the symmetry properties

of the tensor C ′(3) (see (A.17)), they vanish and one is left only with the diagrams with

four adjoint insertions in the hypermultiplet loop.

Let us now consider these diagrams. As remarked before, a building block with four

adjoint lines inserted on the hypermultiplet loop is proportional to g4C ′(4), so at this order

we cannot add any other vertices to it. Moreover, there is a unique contraction allowed,

since each hypermultiplet field has a vanishing one-loop propagator. Thus, the only diagram
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C
′
bdcd

b c

i f bedC
′
ced = 0

d

e

b c
d

Figure 6. Two-loop diagrams and their color factors.

at this order is the one represented on the right in figure 6. This has already been computed

in [52] (see also [41]). Performing the Grassmann algebra and the momentum integral, we

obtain a finite result proportional to ζ(3), which explicitly reads

b c

=
1

q2

(
g2

8π2

)2

ζ(3)× 6C ′bdcd . (4.12)

Using the properties of the C ′-tensors — see in particular (A.19) and (A.20) — we have

6C ′bdcd = 6C ′(bcdd) = C′4 δbc . (4.13)

Since this is the only correction to the propagator at this order, from (4.8) we find

Π =

(
g2

8π2

)2

ζ(3) C′4 +O(g6) , (4.14)

in perfect agreement with the matrix model result reported in (3.3) and (3.5). This is an

extension to a generic N = 2 SYM theory of the check originally performed in [52] for

conformal SQCD.

Three loops. At order g6 many diagrams survive also in the difference theory. Moreover,

some of them can be divergent in d = 4. However, since we are dealing with conformal field

theories, all divergences cancel when one sums all contributing diagrams. Therefore, we can

concentrate on extracting the finite part, which the matrix model result (3.2) suggests to

be proportional to ζ(5). Thus we only look for diagrams which provide ζ(5) contributions,

and we check that their sum reproduces exactly the matrix model result.

To scan all the possible ζ(5)-contributions we use the same approach we applied above.

We start from the building blocks in figure 4 and contract their adjoint lines in all the

possible ways, introducing new vertices when necessary. It is quite simple to realize that

many of the diagrams that are created in this way have a vanishing color factor. For

example, the diagrams proportional to C ′(3) vanish for the same reason we discussed before.

As far as the diagrams with C ′(4) are concerned, we can discard those containing as a sub-

diagram the two-loop contribution on the right of figure 6 since this latter is proportional

to ζ(3), and no ζ(5)-contribution can arise from this kind of diagrams. All other possible

– 22 –



J
H
E
P
0
8
(
2
0
1
9
)
1
0
8

diagrams that one can construct using as building block a sub-diagram with C ′(4) vanish

by manipulations of their color factors.

We are left with diagrams whose color factor is proportional either to C ′(5) or to C ′(6).

In the first case, the building block is proportional to g5 and thus we have insert a further

cubic vertex to obtain the desired power of g; in the second case, instead, the building block

is already of order g6, and so we can only contract its adjoint lines among themselves. We

have made a systematic search of all diagrams that can be obtained in this way. Many of

them vanish either because of their color factor or because of the θ-algebra, while in other

cases the momentum integral does not produce any ζ(5)-contribution. In the following we

list all of the diagrams that do yield a ζ(5)-term. There are seven such diagrams, named

W(I)
bc (q) with I = 1, . . . 7, which are explicitly computed in appendix D. Here we simply

report the result in a schematic way, writing each of them in the form

W(I)
bc (q) = − 1

q2

(
g2

8π2

)3

ζ(5)× x(I) T (I)
bc (4.15)

where T (I)
bc is the color factor, which is in fact proportional to δbc, and x(I) is a numerical

coefficient determined by the explicit evaluation of the integrals over the loop momenta.

In detail, we have

W(1)
bc (q) =

b c → x(I) T (1)
bc = 20C ′bdeced , (4.16)

W(2)
bc (q) =

b c → x(2) T (2)
bc = −20C ′bdeced − 20C ′bdecde , (4.17)

W(3)
bc (q) =

b c → x(3) T (3)
bc = 10C ′bdecde , (4.18)

W(4)
bc (q) =

b c

→ x(4) T (4)
bc = 20C ′bdcede + 20C ′bedecd , (4.19)

W(5)
bc (q) = b c → x(5) T (5)

bc = −40 ifcefC
′
bdefd − 40 ifbefC

′
cdefd ,

(4.20)
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W(6)
bc (q) = b c → x(6) T (6)

bc = −20 ifcedC
′
bfdfe + 20 ifcedC

′
befdf

− 20 ifbedC
′
cfdfe + 20 ifbedC

′
cefdf ,

(4.21)

W(7)
bc (q) =

b c → x(7) T (7)
bc = 10 ifdefC

′
bfecd + 10 ifdefC

′
cfebd .

(4.22)

Since each color factor is proportional to δbc, we can identify terms that are equal up to

an exchange of b and c. In this way we get

7∑

I=1

x(I) T (I)
bc = −80 ifcedC

′
bfdfe + 80 ifcedC

′
bfdef − 10C ′bdecde + 40C ′bdcede + 20 ifdefC

′
bfecd .

(4.23)

Using the relation (A.14), it is easy to see that the first two terms actually cancel, and that

the remaining ones can be written as follows:

7∑

I=1

x(I) T (I)
bc = 30C ′bdcede − 10ifcedC

′
bfdfe + 20 ifdefC

′
bfecd . (4.24)

This expression is apparently different from the color tensor in the g6-term of the matrix

model result (3.2). In fact, the latter contains the totally symmetric combination 30C ′(bdcede)
and does not contain any C ′ with five indices. However, using again (A.14) and the

properties of the C ′ tensors described in appendix A, it is possible to show that the last

two terms in (4.24) precisely symmetrize the first term. The total three-loop contribution

is therefore

7∑

I=1

W(I)
bc (q) = − 1

q2

(
g2

8π2

)3

ζ(5)× 30C ′(bdcede)

= − 1

q2

(
g2

8π2

)3

ζ(5)× C′6 δbc , (4.25)

where in the last step we used (3.3). Altogether, adding the two-loop term (4.14), the

quantum corrections of the scalar propagator proportional to g4 ζ(3) and g6 ζ(5) are

Π = ζ(3)

(
g2

8π2

)2

C′4 − ζ(5)

(
g2

8π2

)3

C′6 +O(g8) . (4.26)

This result fully agrees with the matrix model prediction given in (3.5).

As already mentioned at the end of section 3.1, we observe that the color tensors

C ′b1...bn and the coefficients C′n can be defined for any representation of SU(N) (or U(N)).
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Moreover, the steps that we performed above to show the agreement with the matrix

model predictions only rely on the symmetry/anti-symmetry properties of these tensors

and their group-theory properties, and not on their specific expressions for the SU(N)

theories with matter in the fundamental, symmetric or anti-symmetric representations.

For this reason we believe that the same match could be proved and realized also in more

general superconformal theories with other gauge groups and matter representations.

4.3 Supersymmetric Wilson loop

We now consider the perturbative computation of the vacuum expectation value of a 1/2

BPS circular Wilson loop in the fundamental representation. This composite operator,

placed on a circle C of radius R, is defined as

W (C) =
1

N
tr P exp

{
g

∮

C
dτ
[
iAµ(x) ẋµ(τ) +

R√
2

(
ϕ(x) + ϕ̄(x)

)]}
(4.27)

where P denotes the path-ordering. We parametrize the loop as:

xµ(τ) = R
(

cos τ, sin τ, 0, 0
)

(4.28)

with τ ∈ [ 0, 2π ].

We compute 〈W (C)〉 in perturbation theory using the diagrammatic difference (4.6).

This perturbative computation has been already performed up order g6 in [52], where the

term proportional to ζ(3) coming from the matrix model was reproduced using Feynman

diagrams for the conformal SQCD case, namely for theory A of table 1. Here we briefly

review this result, generalizing it to a generic superconformal theory, and extend it to an

order higher, reconstructing the full ζ(5)-coefficient at order g8.

Let us recall first some remarkable properties of this observable that simplify the

perturbative analysis. The tree-level propagators of the gauge field and of the adjoint

scalar in configuration space are

〈
ϕ̄a(x1)ϕb(x2)

〉
tree

=
δab

4π2x2
12

,
〈
Aaµ(x1)Abν(x2)

〉
tree

=
δabδµν
4π2x2

12

. (4.29)

They are identical, a part from the different space-time indices. We will denote the sum

of a scalar and a gluon propagator with the straight/wiggly line already introduced in

figure 4. Expanding (4.27) at order g2, one gets an integral over C of the sum of the

tree-level propagators of the gluon and of the scalar fields between the points x(τ1) and

x(τ2). This contribution is represented in figure 7.

Using (4.29), one finds

〈
W (C)

〉
= 1 +

g2(N2 − 1)

4N

∮
dτ1dτ2

4π2

R2 − ẋ(τ1) · ẋ(τ1)

|x(τ1)− x(τ2)|2 +O(g4) . (4.30)

Exploiting the parametrization (4.28), one can easily show that the integrand is

τ -independent; indeed
R2 − ẋ(τ1) · ẋ(τ1)

4π2|x(τ1)− x(τ2)|2 =
1

2
. (4.31)
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Figure 7. The graphical representation of the g2-correction to
〈
W (C)

〉
.

n− loop

Figure 8. The graphical representation of the contribution to
〈
W (C)

〉
arising from the n-loop

correction of the gluon and scalar propagators.

Inserting this (4.30), one finally obtains

〈
W (C)

〉
= 1 +

g2(N2 − 1)

8N
+O(g4) . (4.32)

At this order, this calculation is of course the same in N = 2 and N = 4, and thus there

is no g2- contribution to the vacuum expectation value of W (C) in the difference theory.

Also at order g4 there are no contributions in the difference, since the only possible sources

for such contributions are the one-loop corrections to the scalar and gluon propagators,

which however vanish for superconformal theories in the Fermi-Feynman gauge [60, 65],

see figure 3. One begins to see a difference between the N = 4 and the conformal N = 2

results at order g6. Indeed, as we have seen in the previous section, in a generic conformal

N = 2 theory the propagator of the adjoint scalar gets corrected by loop effect starting at

order g4. Due to supersymmetry, also the gluon propagator in the Fermi-Feynman gauge

gets corrected in the same way and thus (4.29) can be replaced by

〈
ϕ̄a(x1)ϕb(x2)

〉
=

δab

4π2x2
12

(
1 + Π

)
,
〈
Aaµ(x1)Abν(x2)

〉
=

δabδµν
4π2x2

12

(
1 + Π

)
, (4.33)

where Π is the quantity introduced in (4.8).

Exploiting this fact, and repeating the same steps as before, we can easily compute

the contribution to the vacuum expectation value of W (C) corresponding to the diagram

in figure 8, which yields a term proportional to g2n+2 ζ(2n− 1).

Using (4.26), for n = 2 this calculation yields

g2(N2 − 1)

8N

(
g2

8π2

)2

ζ(3) C′4 , (4.34)

while for n = 3 it gives

−g
2(N2 − 1)

8N

(
g2

8π2

)3

ζ(5) C′6 . (4.35)

– 26 –



J
H
E
P
0
8
(
2
0
1
9
)
1
0
8

a

cb

i fabc

Figure 9. The vertex correction to
〈
W (C)

〉
in the N = 4 theory at order g4.

Comparing with (3.13) and (3.14), we find a perfect agreement with the matrix model

predictions for the lowest order terms in the g-expansion of X3 and X5. The precise match

with the matrix model results suggests that in the vacuum expectation value of W (C) the

terms proportional to a given Riemann ζ-value with the lowest power of g, namely the

terms proportional to g2n+2 ζ(2n− 1), are entirely captured by the n-th loop correction of

a single gluon or scalar propagator inserted in the Wilson loop. Moreover, the agreement

with the matrix model also suggests that all diagrams contributing to
〈
W (C)

〉
have an

even number of legs attached to the Wilson loop. We shall now check that this is indeed

true, at the first relevant orders.

Absence of other contributions. Let us consider diagrams with three insertions on the

Wilson loop contour. In the N = 4 theory there is such a diagram already at order g4 which

is shown in figure 9. Here the internal vertex can be with three gluons or with two scalars

and one gluon. In both cases it carries a color factor proportional to fabc. This contribution

has been proven to vanish long ago [2, 15]. The cancellation is justified by symmetry

properties of the (finite) integral over the insertion points along the circular loop.6

In the difference theory, instead, the first three-leg diagram appears at order g6 and

is depicted in figure 10. This contribution, however, has a vanishing color factor (see

also [51]). This is due to the different roles of the Q or H superfields, transforming in the

representation R, and of the Q̃ or H̃ ones, transforming in the representation R̄. This

implies that the color factor is

Tr′R T
aT bT c + Tr′R̄ T

aT bT c = C ′abc − C ′acb , (4.36)

which is automatically zero due to the complete symmetry of C ′(3) as shown in (A.17).

At order g8 there are several possible three-leg diagrams. Again, if we classify them in

terms of their color factor, we can distinguish three classes, represented in figure 11. The

first two have again a color factor proportional to the combination (4.36) which vanishes,

while the last type has a color factor proportional to fabc. We have not performed a

detailed calculation of this class of diagrams, but it is natural to expect that they cancel

by a mechanism analogous to the one at work in the g4 diagrams of the N = 4 theory

represented in figure 9, since they have the same color structure and symmetry properties.

This concludes our analysis on the check of the agreement between the matrix model

prediction and the field theory results of
〈
W (C)

〉
at order g8.

6We thank L. Griguolo for a discussion on this point.
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a

cb

C
′
abc − C

′
acb = 0

Figure 10. The one-loop vertex corrections to
〈
W (C)

〉
at g6 order in the difference theory is

vanishing.

a

cb

∝ (C
′
abc − C

′
acb) = 0

a

cb

∝ (C
′
abc − C

′
acb) = 0

a

cb

∝ i fabc

Figure 11. Possible two-loop vertex corrections contributing to
〈
W (C)

〉
at order g8 together with

their color factors.

5 Summary and conclusions

We have considered the perturbative part of the matrix model, derived from localization,

which describes a generic conformal N = 2 SYM theory with group SU(N). We have

described the color structure of the interactions in this matrix model in terms of the

difference between theN = 2 theory and theN = 4 theory corresponding to a free Gaussian

model. In this set-up we have computed the matrix model counterpart of the propagator

of the scalar field in the N = 2 vector multiplet and of the vacuum expectation value of

a 1/2 BPS circular Wilson loop, organizing the resulting expressions according to their

Riemann zeta-value structures. Having at our disposal generic expressions, we could focus

on a class of conformal theories containing fundamental, symmetric and anti-symmetric

matter multiplets and we singled out two classes of theories for which the Wilson loop in

the large-N limit approaches the N = 4 value. Then, we have performed an explicit check

of these matrix model results against their field-theoretic perturbative evaluation by means

of superdiagrams in the N = 1 superfield formalism. We have done this up to order g6 —

three loops — for the propagator, which has allowed us to determine the four-loop terms of

order g8 proportional to ζ(5) in the Wilson loop vacuum expectation value. This is in itself

a significant progress with respect to the checks previously available, namely those of order

g6 ζ(3) for the Wilson loop in the case of the conformal SQCD only. We think however

that the relevance of this computation stays also in the fact that we have shown how the

perturbative computations are made more efficient and tractable by organizing them in the

way suggested by the matrix model, namely by focusing on the color factors corresponding

to traces of adjoint generators inserted on a loop of hypermultiplets. We think that such
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an organization is potentially useful also for different theories, for example non conformal

ones or, maybe, even theories with less supersymmetry for which localization techniques

are not presently available. Beside the circular Wilson loop, it would be interesting also to

study other observables in the various families of N = 2 superconformal theories described

in this paper and analyze their behavior in the large-N limit to gain some insight on their

holographic dual counterparts.
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A Useful group theory formulæ for SU(N)

We denote by Ta, with a = 1, . . . , N2 − 1, a set of Hermitean generators satisfying the

su(N) Lie algebra

[
Ta , Tb

]
= ifabc Tc . (A.1)

We indicate by ta the representative of Ta in the fundamental representation; they are

Hermitean, traceless N ×N matrices that we normalize by setting

tr tatb =
1

2
δab . (A.2)

In the conjugate fundamental representation the generators are

t̄a = −tTa . (A.3)

The generators ta are such that the following fusion/fission identities hold

tr (taM1taM2) =
1

2
tr M1 tr M2 −

1

2N
tr (M1M2) , (A.4)

tr (taM1) tr (taM2) =
1

2
tr (M1M2)− 1

2N
tr M1 tr M2 , (A.5)

for arbitrary (N ×N) matrices M1 and M2.

In the enveloping matrix algebra, we have

ta tb =
1

2

[
1

N
δab 1 + (dabc + i fabc) t

c

]
, (A.6)
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where dabc is the totally symmetric d-symbol of su(N). Using (A.2) and (A.6), we obtain

tr
({
ta , tb

}
tc
)

=
1

2
dabc , tr

([
ta , tb

]
tc
)

=
i

2
fabc , (A.7)

from which it follows that daac = 0. We can write the d- and f -symbols as (N2−1)×(N2−1)

matrices

ifabc = (F a)bc, dabc = (Da)bc (A.8)

and derive the following useful identities:

TrF a = TrDa = TrF aDb = 0 ,

TrF aF b = Nδab , TrDaDb =
N2 − 4

N
δab ,

TrF aF bF c =
iN

2
fabc , TrDaF bF c =

N

2
dabc ,

TrF aF bF cDd =
iN

4
(dadef bce − fadedbce)

(A.9)

where Tr denotes the trace in the adjoint representation.

Traces of generators. In any representation R we have

TrR TaTb = iR δab , (A.10)

where iR is the index ofR, and is fixed once the generators have been normalized in the fun-

damental representation (see (A.2)). The quadratic Casimir operator in the representation

R is defined by

Ta Ta = cR 1 . (A.11)

By tracing this equation and comparing to (A.10), we have

cR =
N2 − 1

dR
iR , (A.12)

with dR being the dimension of the representation R.

The traces of products of generators define a set of cyclic tensors

Ca1...an = TrR Ta1 . . . Tan (A.13)

whose contractions are higher order invariants characterizing the representation R. Let

us note that we can switch the order of any two consecutive indices using the Lie algebra

relation (A.1); indeed:

C...ab... = C...ba... + i fabcC...c... . (A.14)

In our computations we encounter the particular combination of traces introduced

in (2.19), namely

C ′a1...an = Tr′R Ta1 . . . Tan = TrR Ta1 . . . Tan − Tradj Ta1 . . . Tan . (A.15)

These are of course also cyclic, and the relation (A.14) applies to them as well.
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If R is the representation in which the matter hypermultiplets of a superconformal

theory transform, one can prove that

C ′ab = 0 , (A.16)

since C ′ab is proportional to the one-loop β-function coefficient. Therefore, using this prop-

erty and the relation (A.14) one can easily show that for conformal theories

C ′abc = C ′acb + ifabeC
′
ec = C ′acb (A.17)

which, together with cyclicity, implies that the tensor C ′abc is totally symmetric. Thus, it

is proportional to dabc. Finally, one can prove that

C ′abcc = C ′(abcc) . (A.18)

Indeed, if we exchange the two free indices we have

C ′abcc = C ′bacc + ifabeC
′
ecc = C ′bacc , (A.19)

where the last step follows from the fact that C ′ecc = 0 since decc = 0. If instead we switch

the position of a free and a contracted index, we have

C ′abcc = C ′acbc + ifbceC
′
aec = C ′acbc , (A.20)

where have used the fact that C ′aec, being symmetric, vanishes when contracted with fbce.

Some particular representations. The generators in the direct product representation

R = ⊗ are given by

Ta = ta ⊗ 1⊕ 1⊗ ta . (A.21)

This representation is reducible into its symmetric and anti-symmetric parts:

⊗ = ⊕ . (A.22)

In the symmetric representation one has

Tr
(
X ⊗ Y

)
=

1

2

(
tr X tr Y + tr (X Y )

)
, (A.23)

while in the anti-symmetric representation one has

Tr
(
X ⊗ Y

)
=

1

2

(
tr X tr Y − Tr (X Y )

)
. (A.24)

The adjoint representation is contained in the direct product of a fundamental and an

anti-fundamental:

⊗ = singlet⊕ adj . (A.25)

The generators in the adjoint can thus represented simply7 by

Ta = ta ⊗ 1 + 1⊗ ta . (A.26)

Using these relations it is easy to obtain the well-known results collected in table 4.

7They should be thought of as acting on the N2 − 1-dimensional subspace orthogonal to the invariant

vector
∑
i ei⊗ ēi, where ei and ēi, for i = 1, . . . N , are basis vectors in the carrier spaces of the fundamental

and anti-fundamental representations. This however makes no difference for the computation of the traces

we are interested in.
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R dR iR

N 1
2

N(N+1)
2

N+2
2

N(N−1)
2

N−2
2

adj N2 − 1 N

Table 4. Dimensions and indices of the fundamental, symmetric, anti-symmetric and adjoint

representations of SU(N).

If we consider a representation R made of NF fundamental, NS symmetric and NA

anti-symmetric representations, namely

R = NF ⊕NS ⊕NA (A.27)

as in (2.26), we immediately see that

Tr′R T
aT b =

(
NF +NS(N + 2) +NA(N − 2)− 2N

)
tr tatb = −β0 tr tatb (A.28)

where β0 is the one-loop β-function coefficient of the N = 2 SYM theory (see (2.28)).

With a bit more work, but in a straightforward manner, one can compute traces of

more generators. In particular, one can evaluate

Tr′R a
n = NF tr an +NS Tr

(
a⊗ 1 + 1⊗ a

)n
+NA Tr

(
a⊗ 1 + 1⊗ a

)n

− Tradj

(
a⊗ 1 + 1⊗ (−aT )

)n
, (A.29)

with the result

Tr′R a
n =

[
(NF + 2n−1

(
NS −NA

)
+N

(
NS +NA − (1 + (−1)n)

)]
tr an

+

n−1∑

p=1

(
n

p

)(
NS +NA

2
− (−1)n−p

)
tr ap tr an−p . (A.30)

In particular, when n = 2k, this expression can be rewritten as in (2.29) of the main text.

A.1 Traces in a generic representation

A representation R is associated to a Young diagram YR; let r be the number of boxes

in the tableau. Traces in the representation R can be evaluated in terms of traces in the

fundamental representation using the Frobenius theorem. For any group element U in

SU(N), this theorem states that

TrR U =
∑

M

1

|M | χ
R(M) (trU)m1 (trU2)m2 . . . (trU r)mr . (A.31)
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We denote by M a conjugacy class8 of Sr containing permutations made of mj cycles of

length j, with j = 1, . . . r; the number of elements in the class is r!/|M |, with

|M | =
r∏

j=1

mj ! j
mj . (A.32)

With χR(M) we denote the character of the conjugacy class M in the representation R

of the group Sr associated to the tableau YR. If we write U = ea, with a ∈ su(N),

equation (A.31) reads

TrR ea =
∑

M

1

|M | χ
R(M) (tr ea)m1 (tr e2a)m2 . . . (tr era)mr , (A.33)

and expanding it in powers of a, one can obtain the expression of all traces of the form

TrR a
k in terms of products of traces of powers of a in the fundamental representation,

generalizing what we have seen before for the symmetric, anti-symmetric and adjoint rep-

resentations.

B Spinors and Grassmann variables

Spinor notations. We denote by ψ a chiral spinor of components ψα with α = 1, 2, and

by ψ̄ an anti-chiral one of components ψ̄α̇, with ˙α = 1, 2. The spinor indices are raised and

lowered with the following rules:

ψα = εαβ ψβ , ψα = εαβ ψ
β , ψ̄α̇ = εα̇β̇ ψ̄β̇ , ψ̄α̇ = εα̇β̇ ψ̄

β̇ , (B.1)

where

ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1 . (B.2)

We contract indices according to

(ψχ) ≡ ψα χα = εαβ ψβ χα = ψα χβ εαβ , (B.3)

(ψ̄χ̄) ≡ ψ̄α̇ χ̄α̇ = εα̇β̇ ψ̄
β̇ χ̄α̇ = ψ̄α̇ χ̄β̇ ε

α̇β̇ . (B.4)

For the “square” of spinors, we use the notation

ψ2 ≡ (ψψ) , ψ̄2 ≡ (ψ̄ψ̄) . (B.5)

From the previous relations, it is straightforward to obtain the Fierz identities

ψαψβ = −1

2
εαβ ψ2 , ψ̄α̇ψ̄β̇ = +

1

2
εα̇β̇ ψ̄ 2 . (B.6)

Clifford algebra. We realize the Euclidean Clifford algebra

σµσ̄ν + σν σ̄µ = −2 δµν 1 (B.7)

by means of the matrices (σµ)αβ̇ and (σ̄µ)α̇β that can be taken to be

σµ = (~τ ,−i1) , σ̄µ = −σ†µ = (−~τ ,−i1) , (B.8)

8M is associated to a Young diagram with r boxes, containing mj columns of length j.
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where ~τ are the ordinary Pauli matrices. They are such that

(σ̄µ)α̇α = εαβ εα̇β̇(σµ)ββ̇ . (B.9)

With these matrices we can write the 4-vectors as bispinors:

kαβ̇ = kµ (σµ)αβ̇ , k̄αβ̇ = kµ (σ̄µ)α̇β . (B.10)

We will often use the notations k and k̄ to indicate the matrices kαβ̇ and k̄αβ̇ and form

spinor bilinears of the type

θ k θ̄ = θα kαβ̇ θ̄
β̇ . (B.11)

The Clifford algebra, together with the property (B.9), allows to evaluate traces of σ and

σ̄ matrices, which we can also write in terms of traces of matrices of the type (B.10). In

our computations we will need the following traces:

tr
(
k1k̄2

)
=− 2 k1 ·k2 ,

tr
(
k1k̄2k3k̄4

)
= + 2

[
(k1 ·k2) (k3 ·k4)− (k1 ·k3) (k2 ·k4) + (k1 ·k4) (k2 ·k3)

]
+ . . . ,

tr
(
k1k̄2k3k̄4k5k̄6

)
=− 2 k1 ·k2

[
(k3 ·k4) (k5 ·k6)− (k3 ·k5) (k4 ·k6) + (k3 ·k6) (k4 ·k5)

]

+ 2 k1 ·k3

[
(k2 ·k4) (k5 ·k6)− (k2 ·k5) (k4 ·k6) + (k2 ·k6) (k4 ·k5)

]

− 2 k1 ·k4

[
(k2 ·k3) (k5 ·k6)− (k3 ·k5) (k3 ·k6) + (k2 ·k6) (k3 ·k5)

]

+ 2 k1 ·k5

[
(k2 ·k3) (k4 ·k6)− (k3 ·k4) (k3 ·k6) + (k2 ·k6) (k3 ·k4)

]

− 2 k1 ·k6

[
(k2 ·k3) (k4 ·k5)− (k3 ·k4) (k3 ·k5) + (k2 ·k5) (k3 ·k4)

]

+ . . . , (B.12)

where the ellipses in the second and last line stand for parity-odd terms containing con-

tractions with a space-time ε-tensor that do not enter in our computations.

Grassmann integration formulæ. The basic integration formulæ for Grassmann vari-

ables are
∫
d2θ θ2 = 1 ,

∫
d2θ̄ θ̄2 = 1 . (B.13)

These imply that the θ2 and θ̄2 act as fermionic δ-functions; more in general, writing

θij = θi − θj , we have

θ2
ij = δ2(θij) , θ̄ 2

ij = δ2(θ̄ij) ; (B.14)

we also use the notation

θ2
ij θ̄

2
ij = δ4(θij) . (B.15)
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Spinor derivatives. Writing ∂α ≡
∂

∂θα
and ∂̄α̇ ≡

∂

∂θ̄α̇
, we have

∂α θ
2 = 2 θα , ∂∂ θ2 = −4

∂̄α̇ θ̄
2 = −2 θ̄α̇ , ∂̄∂̄ θ̄ 2 = −4 .

(B.16)

The covariant spinor derivatives are defined as

Dα = ∂α + i (σµ)α α̇ θ̄
α̇ ∂µ and D̄α̇ = −∂̄α̇ − i θα (σµ)α α̇ ∂µ . (B.17)

In momentum space, they become

Dα = ∂α − (k θ̄)α and D̄α̇ = −∂̄α̇ + (θ k)α̇ , (B.18)

where k is the momentum flowing outward from the space-time point x, i.e. the Fourier

transform is taken with the phase exp(+i k ·x).

C Grassmann integration in superdiagrams

We discuss a method to carry out the Grassmann integrations appearing in N = 1 super-

diagrams involving chiral/anti-chiral multiplet and vector multiplet lines.

Diagrams with only chiral/anti-chiral multiplet lines. As we can see from the

Feynman rules in figure 2, the three-point vertex with incoming chiral lines carries a factor

of θ2 and thus in the integration over the fermionic variables associated to the vertex, one

remains with only an integral over θ̄. For the three-point vertex with outgoing anti-chiral

lines, we remain instead with an integration over θ only.

We will use a graphical notation in which a black dot represents a θ variable and a

white circle represents a θ̄ variable. From the point of view of the Grassmann integrations,

superdiagrams with only hypermultiplet lines reduce to bipartite graphs, which we call “θ-

graphs”. In these graphs a solid line connecting the i-th dot to the j-th circle corresponds

to the factor

exp
(

2 θi kij θ̄j

)
= 1 + 2 θi kij θ̄j +

1

2

(
2 θi kij θ̄j

)2
(C.1)

coming from the chiral superfield propagator connecting two vertices at points i and j

in a Feynman superdiagram. An example of a θ-graph associated to a superdiagram is

illustrated in figure 12, where the momenta respect momentum conservation at each node.

To compute the diagram we have to integrate over all θi and θ̄j variables. To do so,

we expand the exponential factor corresponding to each line as in (C.1); we graphically

represent this expansion in figure 13.

Once this is done, it is easy to realize that one gets a non-zero contribution from the

Grassmann integration if and only if in each black (or white) node one selects exactly two

incoming (or outgoing) lines. As a consequence, one gets a contribution for each possible

non-self-intersecting path passing through all the nodes that uses the edges present in the

diagram. Such paths are collections of closed cycles. In the example of figure 12 there are

ten such paths, which are drawn in figure 14.
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3
4

5 6

78

k53

k83

k57

k56

k87

k86

k47

k46

q q

k56

k53

k83

k87

k46

k47

k86k57

−→1 2

Figure 12. On the left, a Feynman super-diagram involving only chiral/anti-chiral lines. On the

right, the corresponding θ-graph encoding the Grassmann integrals. The two “external” propagators

with momentum q do not play a rôle in the bipartite graph because the external states are the lowest

components of the chiral and anti-chiral superfields, and so the corresponding Grassmann variables

are set to 0.

= + +
1

Figure 13. Expansion of the exponential factor corresponding to a black line in the θ-graph. In

the right hand side, each grey line corresponds to a θi k θ̄j term.

+ + +

+ + ++

+ +

k56
k53

k83
k87

k46

k47

k86 k57

k53

k53 k53 k53

k53 k53

k46

k46 k46

k46 k46

k87 k87

k87

k86
k86

k86

k47

k47 k47 k47

k47 k47

k83

k83 k83 k83

k83 k83

k57 k57

k57

k46

k56 k56

k56

Figure 14. The paths corresponding to non-vanishing contributions to the integral encoded in the

diagram of figure 12. Note that all cycles of length two are actually accompanied by a factor of 1/2

which, however, we did not write in the figure to avoid clutter.
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We can now integrate over all Grassmann variables belonging to a cycle. By using the

Fierz identities (B.6) and the integration rules (B.13), it is possible to show the follow-

ing relation:

k1

k2

k3p1

p2

pn

=

∫
d2θ1 d

2θ̄1 . . . d
2θn d

2θ̄n
(
2 θ1 k1 θ̄1)

(
2 θ1 p1 θ̄1

)
. . .

= (−1)n+1 tr
(
k1 p̄1 k2 p̄2 . . . kn p̄n

)
(C.2)

where the traces can be computed using (B.12) — or analogous formulæ for n > 3. This

is the key Grassmann integration formula for the calculation of Feynman superdiagrams.

Applying this procedure to the θ-graph of figure 12, we obtain

k56

k53

k83

k87

k46

k47

k86k57

= F (k83, k87, k86, k53, k57, k56, k47, k46) , (C.3)

where we have introduced the function F defined by

F (p1, p2, p3, p4, p5, p6, p7, p8) = − p2
1 p

2
6 p

2
7 − p2

2 p
2
8 p

2
4 − p2

3 p
2
4 p

2
7 − p2

1 p
2
5 p

2
8

+ p2
4 tr

(
p8 p̄7 p2 p̄3

)
+ p2

8 tr
(
p2 p̄1 p4 p̄5

)

+ p2
7 tr

(
p1 p̄4 p6 p̄3

)
+ p2

1 tr
(
p6 p̄8 p7 p̄5

)

+ tr
(
p6 p̄8 p7 p̄2 p1 p̄4

)
+ tr

(
p8 p̄7 p5 p̄4 p1p̄3

)
. (C.4)

With the momentum assignments as in (C.3), the ten terms in the right hand side of (C.4)

precisely reproduce the ten terms represented in figure 14. Computing the traces with the

help of (B.12), one obtains in the end a polynomial of order six in the momenta entirely

made of scalar products.

We have explicitly worked out this example because this θ-graph actually describes

the prototypical example for the Grassmann factor associated to many of the Feynman

superdiagrams that we will consider in detail in appendix D, the only difference being in

the different assignments of the momenta to the various lines.
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k1

k2

p1

p2

q

k1

k2

p1

p2

−(k1 + k2)
−→

1

2

Figure 15. How to associate a θ-graph to a diagram with a vector line attached to matter current.

Vector multiplet lines. For Feynman superdiagrams containing vector multiplet lines,

the most convenient strategy to handle the Grassmann integration is first to eliminate the

vector lines, so that one remains with graphs containing hypermultiplet lines only, which

can then be computed as we have previously described.

Let us first consider the graphs in which all vector lines are attached at both ends

to a hypermultiplet line. In this case, for every vector line we have a sub-graph of the

form described on the left of figure 15, where the solid oriented lines indicate a generic

chiral/anti-chiral multiplet propagator.

As one can see from the Feynman rules listed in section 4, at each cubic vertex, labeled

by 1 and 2, both θ1 and θ̄1, and θ2 and θ̄2 are present and have to be integrated. However,

the vector propagator contains a factor of θ2
12 θ̄

2
12 which acts as a δ-function identifying θ2

and θ̄2 with θ1 and θ̄1, respectively. Therefore, we remain with two Grassmann variables,

say θ1 and θ̄1, to be integrated. The hypermultiplet lines attached to these variables provide

the factor

exp
[
− θ1

(
k1 + p1 + k2 + p2

)
θ̄1

]
= exp

[
− 2 θ1

(
k1 + k2

)
θ̄1

]
(C.5)

where in the second step we have used momentum conservation. This is exactly the same

type of exponential factor that in a θ-graph we associate to a solid line from the black dot

representing θ1 to the white dot representing θ̄1 (see (C.1)). Thus, we deduce the rule of

figure 15 which allows us to write the portion of a θ-graph corresponding to a vector line

attached to matter lines.

Analogous rules can be worked out when there are vertices with the simultaneous emis-

sion of two vector lines from a scalar current line. The simplest case is the one represented

in figure 16.

Things proceed in a perfectly analogous way if there are more quartic vertices. In the

end, the subdiagram gives rise to a θ-subgraph with the same “external” lines. However now

the outgoing lines are all attached to a single black dot — corresponding to an integration

variable θ — and the incoming lines are all attached to a single white circle — corresponding

to a variable θ̄. The dot and the circle are connected by a line, associated with the

exponential factor exp
(
− 2 θK θ̄

)
, where K is the sum of the incoming momenta.

When the diagram contains interaction vertices with three or more vectors, things

are slightly more involved because of the presence of covariant spinor derivatives in such

vertices. We will not describe the procedure in general, because only one diagram with a
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−→
q

k2

p2

k1p1

k3

p3

l

k1

k2

k3

p1

p2

p3

−K

1

23

Figure 16. The rule to replace a quartic vertex with two vector lines with the corresponding

θ-graph. Here K = k1 + k2 + k3.

three-vector vertex is needed in our computations. Indeed, we find more convenient to deal

directly with this case, in which it is again possible to rewrite the Grassmann integrals in

terms of a θ-graph of the type introduced above.

D Evaluation of the relevant superdiagrams

We report the computation of the Feynman superdiagrams that yield a contribution pro-

portional to ζ(5) in the three-loop corrections to the propagator of the scalar field in the

N = 2 vector multiplet.

Any diagram of this kind, with external adjoint indices b and c, external momentum

q and s internal lines, is written as

Wbc(q) = N × Tbc ×
∫ ∏

s

ddks
(2π)d

δ(d)(cons)
Z(k)∏
s k

2
s

. (D.1)

Here N is the product of the symmetry factor of the diagram and all the factors (like

the powers of the coupling constant g) appearing in the vertices — except for the color

factors which give rise to the tensor Tbc. We have then the scalar integral over the internal

momenta ks which we perform using dimensional regularization setting d = 4 − 2ε. The

momenta are subject to the appropriate momentum conservation relations enforced by the

δ-functions δ(d)(cons). Beside the denominator coming from the massless propagators, the

integrand contains also a numerator Z(k) which is the result of the integration over all the

Grassmann variables of the θ-dependent expressions present in the superdiagram.

The massless scalar integrals at three loops with cubic or quartic vertices can be

evaluated by various means; in particular, we use the FORM version of the program Mincer

discussed in [66], which classifies them according to different “topologies” described by

diagrams in which a solid line indicates a massless scalar propagator, and momentum

conservation is enforced at each vertex.

Diagrams with six insertions on the hypermultiplet loop. We start by considering

the diagrams with six insertions of an adjoint generator on the hypermultiplet loop. The

color factor of these diagrams is proportional to a doubly contracted C′ tensor with six

indices defined in (2.19).
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The first diagram we consider is the following

W(1)
bc (q) =

qq

3 4

5 6

78

k53

k65

k46

k47

k78

k83

k58

k67

1 2
(D.2)

In this first diagram we set up the notation that we will use also in all subsequent ones. The

external momentum is always denoted as q. Regarding the labeling of internal momenta,

we label the internal vertices (from 3 to 8 in this case) and we denote as kij the momentum

flowing in a propagator from the vertex i to the vertex j, which is also the same convention

introduced in (C.1). Assuming it, from now on we will display in the figures only the labels

of the vertices and not of the internal momenta. The Feynman rules for propagators and

vertices are given section 4.1. Using them, we get

W(1)
bc (q) = 8g6 × C ′bdeced × 3 4

5 6

78

1 2 Z(1)(k). (D.3)

The scalar diagram has the ladder topology denoted as LA in [66]. The Grassmann factor

Z(1)(k) is obtained integrating over d4θi for i = 3, . . . , 8 and is easily determined using the

rule described in figure 15. It is given by the following θ-diagram

Z(1)(k) =

q

−q −q −q

q

= −q6 . (D.4)

The evaluation of this θ-diagram by means of its cycle expansion, as explained after (C.1)

and illustrated in figure 12, is immediate using (C.2). A factor of q4 removes the two

external propagators in the scalar diagram, so that it reduces to

−q2 = −20ζ(5)

(4π)6

1

q2
. (D.5)

Here we have employed the standard graphical notation for diagrams with canceled external

propagators and we have given the value of this scalar integral, which is finite, directly in

d = 4. Altogether we get thus

W(1)
bc (q) = − 1

q2

(
g2

8π2

)3

ζ(5)×
(
20C ′bdeced

)
. (D.6)
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The next diagram is

W(2)
bc (q) = 3 4

5

78

1 2

= 4g6 × 2 T (2)
bc × 3 4

5

78

1 2 Z(2)(k) . (D.7)

Here the color tensor reads

T (2)
bc = C ′bdecde + C ′bdeced , (D.8)

the two terms stemming from the two ways to attach the gluon lines to the quartic vertex.

This expression comes with a factor of 2 in (D.7) to account for the diagram in which the

dashed and dotted parts of the hypermultiplet loop are switched. The scalar diagram has

the fan topology denoted as FA in [66]. The Grassmann factor can be determined using

the rule described in figure 16 and it is given by

Z(2)(k) =
−q −q

q

= q4 . (D.9)

This factor removes the two external propagators in the scalar diagram, so that it reduces to

=
20ζ(5)

(4π)6

1

q2
. (D.10)

Altogether we find thus

W(2)
bc (q) = − 1

q2

(
g2

8π2

)3

ζ(5)×
(
−20C ′bdecde − 20C ′bdeced

)
. (D.11)

The third diagram that contributes is

W(3)
bc (q) = 3 4

5 6

78

1 2
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= 8g6 × C ′bdecde × 3 4

5 6

78

1 2 Z(3)(k) . (D.12)

The scalar diagram has the non-oriented topology denoted as NO in [66]. The Grassmann

factor is found applying the rule of figure 15 and it is given by a θ-diagram of the type

depicted in (C.3), but with a different assignment of momenta. In particular, one has

Z(3)(k) = F
(
k83,−(k46 + k78), k65, k53, k78,−(k47 + k65), k46, k47

)
. (D.13)

Evaluating this and inserting it in the scalar momentum integral, we find that the results

contains a ζ(5)-contribution. Indeed we have

3 4

5 6

78

1 2 Z(3)(k) = −10ζ(5)

(4π)6

1

q2
+ . . . (D.14)

where the ellipses stand for terms that do not contain ζ(5). Putting together the various

factors, we find

W(3)
bc (q) = − 1

q2

(
g2

8π2

)3

ζ(5)×
(
10C ′bdecde

)
+ . . . . (D.15)

Next we consider

W(4)
bc (q) =

3 4

5

6 78

1 2

= −8g6 × T (4)
bc × 3 4

5

6

78

1 2 Z(4)(k) , (D.16)

where the color tensor reads

T (4)
bc = C ′bdedce + C ′bdcede . (D.17)
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Here the second term comes from the diagram where the dashed and dotted parts of the

hypermultiplet loop are exchanged. The scalar diagram has the “Benz” topology denoted

as BE in [66]. The Grassmann factor is found using the rule of figure 15 and it is given by

Z(4)(k) = F
(
k83,−(k46 + k68), k67, k53, k68,−(k45 + k67), k47, k45

)
. (D.18)

The corresponding scalar momentum integration contains a ζ(5) contribution; indeed

3 4

5

6

78

1 2 Z(4)(k) =
20ζ(5)

(4π)6

1

q2
+ . . . . (D.19)

Altogether we have thus

W(4)
bc (q) = − 1

q2

(
g2

8π2

)3

ζ(5)×
(
20C ′bdedce + 20C ′bdcede

)
+ . . . . (D.20)

Diagrams with five insertions on the hypermultiplet loop. We now consider the

diagrams with five insertions of an adjoint generator on the hypermultiplet loop. The first

diagram of this kind we consider is

W(5)
bc (q) = 3 4

5

8

6

7

1 2

= −8g6 × T (5)
bc × 3 4

5 6

78

1 2 Z(5)(k) . (D.21)

The color factor is given by

T (5)
bc = ifcefC

′
bdefd − ifcefC

′
bdfed + ifbefC

′
cdefd − ifbefC

′
cdfed

= 2 ifcefC
′
bdefd + 2 ifbefC

′
cdefd , (D.22)

where the four terms that appear in the first line correspond to the four possible ways to

attach the “external” vector multiplet line. The Grassmann factor is again found using the

rule of figure 15 and it is given by

Z(5)(k) = F
(
0,−k78, k78,−q, 0, q, k78,−(k78 + q)

)
. (D.23)
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Using this result inside the scalar momentum integral, which has the LA topology, one finds

3 4

5 6

78

1 2 Z(5)(k) = −20ζ(5)

(4π)6

1

q2
+ . . . . (D.24)

The final result for this diagram is then

W(5)
bc (q) = − 1

q2

(
g2

8π2

)3

ζ(5)×
(
−40 ifcefC

′
bdefd − 40 ifbefC

′
cdefd

)
+ . . . . (D.25)

Another diagram in this class is

W(6)
bc (q) = 3 4

5

6

8

71 2

= −8g6 × T (6)
bc × 3 4

5

6

78

1 2 Z(6)(k) , (D.26)

where the color factor is

T (6)
bc = ifcedC

′
bfdfe − ifcedC

′
befdf + ifbedC

′
cfdfe − ifbedC

′
cefdf . (D.27)

Here the four terms correspond to the four possible ways to attach the “external” adjoint

chiral multiplet line. Using the by-now familiar procedure, the Grassmann factor is found

to be

Z(6)(k) = F
(
k73,−(k56 + k87), k68, k53, k56, k54, k87,−(k87 + q)

)
. (D.28)

The scalar integral, which has the BE topology, yields the result

3 4

5

6

78

1 2 Z(6)(k) = −20ζ(5)

(4π)6

1

q2
+ . . . . (D.29)
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The total result is thus

W(6)
bc (q) =− 1

q2

(
g2

8π2

)3

ζ(5)

×
(
−20ifcedC

′
bfdfe+20ifcedC

′
befdf−20ifbedC

′
cfdfe+20ifbedC

′
cefdf

)
+. . . . (D.30)

Among the diagrams with five insertions that give a ζ(5) contribution, there is one

whose Grassmann factor cannot be computed simply by using the rules illustrated in ap-

pendix C. It is the following:

W(7)
bc (q) = 3 4

5

6

78

1 2

= − 1

16
(8g6)× T (7)

bc × 3 4

5

6

78

1 2 Z(7)(k) . (D.31)

The color factor reads

T (7)
bc = ifdefC

′
bfecd + ifdefC

′
cfebd , (D.32)

with the two terms corresponding to the fact that in the hypermultiplet loop the dashed

or dotted parts can be exchanged. Since the cubic vector vertex contains covariant spinor

derivatives and is not symmetric in the three vector lines that it contains, the diagram gets

six distinct contributions arising from the six different ways it is contracted with the other

vertices of the diagram. We write these six terms as follows

Z(7) = Z(7)
578 + Z(7)

758 + Z(7)
785 + Z(7)

875 + Z(7)
857 + Z(7)

587 . (D.33)

The first term above is

Z(7)
578(k) =

[(
D6

)2
Dα

6 δ
4(θ65)

]
δ4(θ67)

[
D6,α δ

4(θ68)
]

exp
[
A(k)

]
. (D.34)

Here we have denoted by D6,α and D6,α̇ the covariant spinor derivatives defined in (B.18)

with respect to θ6 and θ̄6. The last exponential factor exp
[
A(q, k)

]
contains all other

contributions which amount to

A(k) = 2 θ4 k45 θ̄5 + 2 θ5 k53 θ̄3 − θ5

(
k45 + k53

)
θ̄5 + 2 θ4 k47 θ̄7 + 2 θ7 k78 θ̄8

− θ7

(
k47 + k78

)
θ̄7 + 2 θ8 k83 θ̄3 − θ8

(
k78 + k83

)
θ̄8 . (D.35)
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Using the identity

D6,α δ
4(θ68) =

(
∂6,α − k68θ̄6

)
δ4(θ68) = −

(
∂8,α + k68θ̄6

)
δ4(θ68) (D.36)

and then integrating by parts with respect to θ8, we can rewrite (D.34) as follows

Z(7)
578(k) = δ4(θ67) δ4(θ68)

[(
D6

)2
Dα

6 δ
4(θ65)

](
∂8,α − (k68 θ̄8)α

)
exp

[
A(k)

]
. (D.37)

By direct evaluation one can show that
(
D6

)2
Dα

6 δ
4(θ65) = −4 e−θ6 k65 θ̄65

[
2 θα65 + (k65 θ̄5)α (θ65)2

]
, (D.38)

and
(
∂8,α − (k68 θ̄8)α

)
exp

[
A(k)

]
= 2(k83 θ̄38)α exp

[
A(k)

]
(D.39)

where in the last step we used momentum conservation. Substituting (D.38) and (D.39)

into (D.37), after a Fierz rearrangement we arrive at

Z(7)
578(k) = −16 δ4(θ67) δ4(θ68)

(
θ65 k83 θ̄38

) (
1 + θ65 k65 θ̄5

)
exp

[
A(k)− θ6 k65 θ̄65

]

= −16 δ4(θ67) δ4(θ68)
(
θ65 k83 θ̄38

)
exp

[
A(k)− θ6 k65 θ̄65 + θ65 k65 θ̄5

]
, (D.40)

where in the second step we could replace the factor
(
1 + θ65 k65 θ̄5

)
with exp

[
θ65 k65 θ̄5

]

because it is multiplied by θ65.

We now perform the θ-integrations using the δ-functions present in (D.40) and keep

as remaining independent variables θ4, θ̄63, θ65, θ6 and θ̄6; with straightforward manipu-

lations, involving also the use of momentum conservation, we rewrite
[
A(k)− θ6 k65 θ̄65 +

θ65 k65 θ̄5

]
as

−2 θ4 q θ̄6 − 2 θ4 k45 θ̄65 + 2 θ5 q θ̄63 + 2 θ65 k53 θ̄63 + 2 θ6 k45 θ̄65 − 2 θ65 k53 θ̄65 . (D.41)

We also have

2 θ65 k83 θ̄38 = −2 θ65 k83 θ̄63 ≡ exp
[
− 2λ θ65 k83 θ̄63

]∣∣∣
λ

(D.42)

where the notation X
∣∣
λ

means the term of X that is linear in λ. Altogether we have

managed to express Z(7)
578(k) as an exponential:

Z(7)
578(k) =− 8 exp

[
− 2 θ4 q θ̄6 − 2 θ4 k45 θ̄65 + 2 θ5 q θ̄63

+ 2 θ65 (k53 − λk83) θ̄63 + 2 θ6 k45 θ̄65 − 2 θ65 k53 θ̄65

]∣∣∣
λ
. (D.43)

This exponential can be interpreted as a θ-graph:9

Z(7)
578(k) = −8

q

k53 − λk83

−k53

−q

−k45

k57

∣∣∣∣∣
λ

= −8F
(
k53 − λk83,−k53, 0, q, k45, 0,−k45,−q

)∣∣∣
λ
.

(D.44)

9Since we use as Grassmann variables the differences θ̄63 and θ65 of original variables, in the resulting

θ-graph momentum conservation is not realized at each node. However, this is does not cause any problem.
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We can apply this same procedure to evaluate the other five terms in (D.33) and obtain

Z(7)
758(k) = δ4(θ65)

[(
D6

)2
Dα

6 δ
4(θ67)

] [
D6,α δ

4(θ68)
]

exp
[
A(k)

]

= −8F
(
− λk83,−k78, 0, q, k47, 0,−k47,−q

)∣∣∣
λ
, (D.45)

Z(7)
785(k) =

[(
D6

)2
Dα

6 δ
4(θ67)

]
δ4(θ68)

[
D6,α δ

4(θ65)
]

exp
[
A(k)

]

= −8F
(
− λk53,−k78, 0, q, k47, 0,−k47,−q

)∣∣∣
λ
, (D.46)

Z(7)
875(k) = δ4(θ67)

[(
D6

)2
Dα

6 δ
4(θ68)

] [
D6,α δ

4(θ65)
]

exp
[
A(k)

]

= −8F
(
k83 − λk53,−k83, 0, q, 0, 0, 0,−q

)∣∣∣
λ

= 0 , (D.47)

Z(7)
857(k) = δ4(θ65)

[(
D6

)2
Dα

6 δ
4(θ68)

] [
D6,α δ

4(θ67)
]

exp
[
A(k)

]

= −8F
(
− k83,−k83 − λk78, k83,−q, 0, q, 0,−q

)∣∣∣
λ
, (D.48)

Z(7)
587(k) =

[(
D6

)2
Dα

6 δ
4(θ65)

] [
D6,α δ

4(θ67)
]
δ4(θ68) exp

[
A(k)

]

= 0 . (D.49)

The vanishing of the last contribution is due to the fact that in the step analogous to the

one in (D.39) we compute

(
∂7,α − (k67 θ̄7)α

)
exp

[
A(k)

]
= 2
(
k78 θ̄87

)
α

exp
[
A(k)

]
= 0 ; (D.50)

indeed in presence of δ4(θ68) δ4(θ67), the difference θ̄87 is null. The vanishing of this factor

makes zero the entire expression.

Now that we have computed all six terms of (D.33), we can insert the resulting ex-

pression for Z(7)(k) in the momentum integration, which has the BE topology, obtaining

3 4

5

6

78

1 2 Z(7)(k) =
160ζ(5)

(4π)6

1

q2
+ . . . . (D.51)

Putting everything together, we finally get

W(7)
bc (q) = − 1

q2

(
g2

8π2

)3

ζ(5)×
(
10 i fdefC

′
bfecd + 10 i fdefC

′
cfebd

)
+ . . . . (D.52)

We have made a thorough analysis of all diagrams that can contribute to the propa-

gator at order g8 and the ones we have listed above are the only ones that yield a term

proportional to ζ(5) in the difference theory for a generic superconformal matter content.

Other diagrams, indeed, either vanish due their color structure or give contributions that

do not contain ζ(5).
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