1,033 research outputs found

    AC-driven quantum spins: resonant enhancement of transverse DC magnetization

    Get PDF
    We consider s=1/2 spins in the presence of a constant magnetic field in z-direction and an AC magnetic field in the x-z plane. A nonzero DC magnetization component in y direction is a result of broken symmetries. A pairwise interaction between two spins is shown to resonantly increase the induced magnetization by one order of magnitude. We discuss the mechanism of this enhancement, which is due to additional avoided crossings in the level structure of the system.Comment: 7 pages, 7 figure

    Dimension dependent energy thresholds for discrete breathers

    Full text link
    Discrete breathers are time-periodic, spatially localized solutions of the equations of motion for a system of classical degrees of freedom interacting on a lattice. We study the existence of energy thresholds for discrete breathers, i.e., the question whether, in a certain system, discrete breathers of arbitrarily low energy exist, or a threshold has to be overcome in order to excite a discrete breather. Breather energies are found to have a positive lower bound if the lattice dimension d is greater than or equal to a certain critical value d_c, whereas no energy threshold is observed for d<d_c. The critical dimension d_c is system dependent and can be computed explicitly, taking on values between zero and infinity. Three classes of Hamiltonian systems are distinguished, being characterized by different mechanisms effecting the existence (or non-existence) of an energy threshold.Comment: 20 pages, 5 figure

    Energy thresholds for discrete breathers

    Full text link
    Discrete breathers are time-periodic, spatially localized solutions of the equations of motion for a system of classical degrees of freedom interacting on a lattice. An important issue, not only from a theoretical point of view but also for their experimental detection, are their energy properties. We considerably enlarge the scenario of possible energy properties presented by Flach, Kladko, and MacKay [Phys. Rev. Lett. 78, 1207 (1997)]. Breather energies have a positive lower bound if the lattice dimension is greater than or equal to a certain critical value d_c. We show that d_c can generically be greater than two for a large class of Hamiltonian systems. Furthermore, examples are provided for systems where discrete breathers exist but do not emerge from the bifurcation of a band edge plane wave. Some of these systems support breathers of arbitrarily low energy in any spatial dimension.Comment: 4 pages, 4 figure

    Interaction induced fractional Bloch and tunneling oscillations

    Full text link
    We study the dynamics of few interacting bosons in a one-dimensional lattice with dc bias. In the absence of interactions the system displays single particle Bloch oscillations. For strong interaction the Bloch oscillation regime reemerges with fractional Bloch periods which are inversely proportional to the number of bosons clustered into a bound state. The interaction strength is affecting the oscillation amplitude. Excellent agreement is found between numerical data and a composite particle dynamics approach. For specific values of the interaction strength a particle will tunnel from the interacting cloud to a well defined distant lattice location.Comment: 4 pages, 4 figure

    On the Existence of Localized Excitations in Nonlinear Hamiltonian Lattices

    Full text link
    We consider time-periodic nonlinear localized excitations (NLEs) on one-dimensional translationally invariant Hamiltonian lattices with arbitrary finite interaction range and arbitrary finite number of degrees of freedom per unit cell. We analyse a mapping of the Fourier coefficients of the NLE solution. NLEs correspond to homoclinic points in the phase space of this map. Using dimensionality properties of separatrix manifolds of the mapping we show the persistence of NLE solutions under perturbations of the system, provided NLEs exist for the given system. For a class of nonintegrable Fermi-Pasta-Ulam chains we rigorously prove the existence of NLE solutions.Comment: 13 pages, LaTeX, 2 figures will be mailed upon request (Phys. Rev. E, in press

    Slow Relaxation and Phase Space Properties of a Conservative System with Many Degrees of Freedom

    Full text link
    We study the one-dimensional discrete Φ4\Phi^4 model. We compare two equilibrium properties by use of molecular dynamics simulations: the Lyapunov spectrum and the time dependence of local correlation functions. Both properties imply the existence of a dynamical crossover of the system at the same temperature. This correlation holds for two rather different regimes of the system - the displacive and intermediate coupling regimes. Our results imply a deep connection between slowing down of relaxations and phase space properties of complex systems.Comment: 14 pages, LaTeX, 10 Figures available upon request (SF), Phys. Rev. E, accepted for publicatio

    q-Breathers and the Fermi-Pasta-Ulam Problem

    Full text link
    The Fermi-Pasta-Ulam (FPU) paradox consists of the nonequipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number qq. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here qq-Breathers (QB). They are characterized by time periodicity, exponential localization in the qq-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.Comment: 4 pages, 4 figure

    Solitons in anharmonic chains with ultra-long-range interatomic interactions

    Full text link
    We study the influence of long-range interatomic interactions on the properties of supersonic pulse solitons in anharmonic chains. We show that in the case of ultra-long-range (e.g., screened Coulomb) interactions three different types of pulse solitons coexist in a certain velocity interval: one type is unstable but the two others are stable. The high-energy stable soliton is broad and can be described in the quasicontinuum approximation. But the low-energy stable soliton consists of two components, short-range and long-range ones, and can be considered as a bound state of these components.Comment: 4 pages (LaTeX), 5 figures (Postscript); submitted to Phys. Rev.

    Tail resonances of FPU q-breathers and their impact on the pathway to equipartition

    Full text link
    Upon initial excitation of a few normal modes the energy distribution among all modes of a nonlinear atomic chain (the Fermi-Pasta-Ulam model) exhibits exponential localization on large time scales. At the same time resonant anomalies (peaks) are observed in its weakly excited tail for long times preceding equipartition. We observe a similar resonant tail structure also for exact time-periodic Lyapunov orbits, coined q-breathers due to their exponential localization in modal space. We give a simple explanation for this structure in terms of superharmonic resonances. The resonance analysis agrees very well with numerical results and has predictive power. We extend a previously developed perturbation method, based essentially on a Poincare-Lindstedt scheme, in order to account for these resonances, and in order to treat more general model cases, including truncated Toda potentials. Our results give qualitative and semiquantitative account for the superharmonic resonances of q-breathers and natural packets
    • …
    corecore