42 research outputs found

    Hydromorphological analysis and water balance modelling of ombro- and mesotrophic peatlands

    Get PDF
    The hydromorphological analysis (HMA) is a method to quantify the potentials of mire revitalisation. In this study, the HMA is combined with the new peatland-tool of the water balance model AKWA-M®. This peatland-tool includes as well depth functions of the hydraulic conductivity and drainable porosity for several mire-ecotope-types as specific equations for mire evapotranspiration. The calculations were applied in several peatlands and mires of the German-Czech Ore Mountains (Erzgebirge/Krušné hory). The simulation results show that the chosen depth functions are valuable for the water balance calculation of mire ecotopes with a fully developed akrotelm like ombro- and mesotrophic peatlands. For degenerated peat soil or regenerating mires it is necessary to improve the model and the parameter calibration, especially the depth functions, with additional measured data in different peatlands

    Reduced fronto-striatal volume in attention-deficit/hyperactivity disorder in two cohorts across the lifespan

    Get PDF
    Attention-Deficit/Hyperactivity Disorder (ADHD) has been associated with altered brain anatomy in neuroimaging studies. However, small and heterogeneous study samples, and the use of region-of-interest and tissue-specific analyses have limited the consistency and replicability of these effects. We used a data-driven multivariate approach to investigate neuroanatomical features associated with ADHD in two independent cohorts: the Dutch NeuroIMAGE cohort (n = 890, 17.2 years) and the Brazilian IMpACT cohort (n = 180, 44.2 years). Using independent component analysis of whole-brain morphometry images, 375 neuroanatomical components were assessed for association with ADHD. In both discovery (corrected-p = 0.0085) and replication (p = 0.032) cohorts, ADHD was associated with reduced volume in frontal lobes, striatum, and their interconnecting white-matter. Current results provide further evidence for the role of the fronto-striatal circuit in ADHD in children, and for the first time show its relevance to ADHD in adults. The fact that the cohorts are from different continents and comprise different age ranges highlights the robustness of the findings

    Management of Bleeding and Hemolysis During Percutaneous Microaxial Flow Pump Support A Practical Approach

    Get PDF
    © 2023 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Percutaneous ventricular assist devices (pVADs) are increasingly being used because of improved experience and availability. The Impella (Abiomed), a percutaneous microaxial, continuous-flow, short-term ventricular assist device, requires meticulous postimplantation management to avoid the 2 most frequent complications, namely, bleeding and hemolysis. A standardized approach to the prevention, detection, and treatment of these complications is mandatory to improve outcomes. The risk for hemolysis is mostly influenced by pump instability, resulting from patient- or device-related factors. Upfront echocardiographic assessment, frequent monitoring, and prompt intervention are essential. The precarious hemostatic balance during pVAD support results from the combination of a procoagulant state, due to critical illness and contact pathway activation, together with a variety of factors aggravating bleeding risk. Preventive strategies and appropriate management, adapted to the impact of the bleeding, are crucial. This review offers a guide to physicians to tackle these device-related complications in this critically ill pVAD-supported patient population.Peer reviewe

    Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs

    Get PDF
    Tendon and ligaments have poor healing capacity and when injured often require surgical intervention. Tissue replacement via autografts and allografts are non-ideal strategies that can lead to future problems. As an alternative, scaffold-based tissue engineering strategies are being pursued. In this review, we describe design considerations and major recent advancements of scaffolds for tendon/ligament engineering. Specifically, we outline native tendon/ligament characteristics critical for design parameters and outcome measures, and introduce synthetic and naturally-derived biomaterials used in tendon/ligament scaffolds. We will describe applications of these biomaterials in advanced tendon/ligament engineering strategies including the utility of scaffold functionalization, cyclic strain, growth factors, and interface considerations. The goal of this review is to compile and interpret the important findings of recent tendon/ligament engineering research in an effort towards the advancement of regenerative strategies
    corecore