45,377 research outputs found

    Symmetry-Induced Tunnelling in One-Dimensional Disordered Potentials

    Get PDF
    A new mechanism of tunnelling at macroscopic distances is proposed for a wave packet localized in one-dimensional disordered potential with mirror symmetry, V(-x)=V(x). Unlike quantum tunnelling through a regular potential barrier, which occurs only at the energies lower then the barrier height, the proposed mechanism of tunnelling exists even for weak white-noise-like scattering potentials. It also exists in classical circuits of resonant contours with random resonant frequencies. The latter property may be used as a new method of secure communication, which does not require coding and decoding of the transmitting signal.Comment: 10 pages, 4 figure

    Dual Formulation of the Lie Algebra S-expansion Procedure

    Full text link
    The expansion of a Lie algebra entails finding a new, bigger algebra G, through a series of well-defined steps, from an original Lie algebra g. One incarnation of the method, the so-called S-expansion, involves the use of a finite abelian semigroup S to accomplish this task. In this paper we put forward a dual formulation of the S-expansion method which is based on the dual picture of a Lie algebra given by the Maurer-Cartan forms. The dual version of the method is useful in finding a generalization to the case of a gauge free differential algebra, which in turn is relevant for physical applications in, e.g., Supergravity. It also sheds new light on the puzzling relation between two Chern-Simons Lagrangians for gravity in 2+1 dimensions, namely the Einstein-Hilbert Lagrangian and the one for the so-called "exotic gravity".Comment: 12 pages, no figure

    Euler Chern Simons Gravity from Lovelock Born Infeld Gravity

    Get PDF
    In the context of a gauge theoretical formulation, higher dimensional gravity invariant under the AdS group is dimensionally reduced to Euler-Chern-Simons gravity. The dimensional reduction procedure of Grignani-Nardelli [Phys. Lett. B 300, 38 (1993)] is generalized so as to permit reducing D-dimensional Lanczos Lovelock gravity to d=D-1 dimensions.Comment: 6 pages, no figures, accepted for publication in Phys. Lett.

    The Quasar-frame Velocity Distribution of Narrow CIV Absorbers

    Full text link
    We report on a survey for narrow (FWHM < 600 km/s) CIV absorption lines in a sample of bright quasars at redshifts 1.8≤z<2.251.8 \le z < 2.25 in the Sloan Digital Sky Survey. Our main goal is to understand the relationship of narrow CIV absorbers to quasar outflows and, more generally, to quasar environments. We determine velocity zero-points using the broad MgII emission line, and then measure the absorbers' quasar-frame velocity distribution. We examine the distribution of lines arising in quasar outflows by subtracting model fits to the contributions from cosmologically intervening absorbers and absorption due to the quasar host galaxy or cluster environment. We find a substantial number (≥43±6\ge 43\pm6 per cent) of absorbers with REW >0.3> 0.3 \AA in the velocity range +750 km/s \la v \la +12000 km/s are intrinsic to the AGN outflow. This `outflow fraction' peaks near v=+2000v=+2000 km/s with a value of foutflow≃0.81±0.13f_{outflow} \simeq 0.81 \pm 0.13. At velocities below v≈+2000v \approx +2000 km/s the incidence of outflowing systems drops, possibly due to geometric effects or to the over-ionization of gas that is nearer the accretion disk. Furthermore, we find that outflow-absorbers are on average broader and stronger than cosmologically-intervening systems. Finally, we find that ∼14\sim 14 per cent of the quasars in our sample exhibit narrow, outflowing CIV absorption with REW >0.3> 0.3\AA, slightly larger than that for broad absorption line systems.Comment: 11 pages, 9 figures, accepted for publication in MNRA
    • …
    corecore