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Abstract

In the context of a gauge theoretical formulation, higher-dimensional gravity invariant under the AdS group is dimen
reduced to Euler–Chern–Simons gravity. The dimensional reduction procedure of Grignani–Nardelli [Phys. Lett. B 30
38] is generalized so as to permit reducingD-dimensional Lanczos–Lovelock gravity tod =D − 1 dimensions.
 2004 Elsevier B.V.
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1. Introduction

Odd-dimensional gravity may be cast as a ga
theory for the (A)dS groups [1]. The Lagrangian is t
Euler–Chern–Simons form inD = 2n− 1 dimensions
[2,3]

S
(D)
CS =

∫ [D/2]∑
p=0

α(D)
p L(D)

p ,

where

L(D)
p = εA1···ADR

A1A2 · · ·RA2p−1A2peA2p+1 · · ·eAD,

α(D)
p = κ

l−(D−2p−1)

(D − 2p)

(D−1
2
p

)
,

whose exterior derivative is Euler’s topological i
variant in 2n dimensions. The constantsκ and l are
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related to Newton’s constantG and to the cosmo
logical constantΛ through 1/κ= 2(D − 2)!ΩD−2G

(whereΩD−2 is the area of the(D − 2) unit sphere)
andΛ= ±(D − 1)(D − 2)/2l2.

The Chern–Simons Lagrangian remains invari
under local Lorentz rotations in tangent spaceδeA =
λABe

B , δωAB = −DλAB, and changes by a tota
derivative under an infinitesimal (A)dS boostδeA =
−DλA, δωAB = 1

�2 (λ
AeB − λBeA). With appropriate

boundary conditions, this means that the action is
invariant by the (A)dS gauge transformations. Furth
more, the vielbein and the spin connection corresp
to the gauge fields associated with (A)dS boosts
Lorentz rotations, respectively. Thus, odd-dimensio
Chern–Simons gravity is a good gauge theory for
(A)dS group, but its usefulness is limited to odd
mensions. This is related to the fact that no topolog
invariants have been found in odd dimensions,
therefore the derivative of an even-dimensional
grangian cannot be made equal to any of them [3].

The requirement that the equations of motion fu
determine the dynamics for as many component
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the independent fields as possible may also be u
in the even-dimensional case, leading to the so-ca
Lovelock–Born–Infeld action [2,3]

(1)S
(2n)
BI = κl2

2n

∫
εA1···A2nR̄

A1A2 · · · R̄A2n−1A2n ,

whereR̄AB ≡ RAB + 1
l2
eAeB and l is a length. For

D = 2n = 4, (1) reduces to the EH action wit
a cosmological constantΛ = ±3/l2 plus Euler’s
topological invariant with a fixed weight factor.

When one considers the spin connectionωAB and
the vielbeineA as components of a connection f
the (A)dS group, one finds that the action (1)
invariant under local Lorentz rotations while, und
infinitesimal (A)dS boosts, it changes by

δS
(2n)
BI = −κ

∫
εA1···A2nR̄

A1A2 · · · R̄A2n−3A2n−2

× T A2n−1λA2n,

whereλA is the infinitesimal parameter of the transfo
mation. It simply makes no sense to use the equat
of motion associated with the action (1) to enforce
invariance;any action is on-shell invariant underany
infinitesimal transformation, just by the definition
the equations of motion. On the other hand, one co
try to set the torsion equal to zero by fiat, and imp
T A = 0 as an off-shell identity. This is unsatisfacto
in the sense that, in the (A)dS gauge picture,
sion and curvature stand on a similar footing as fie
strengths of the connection whose components areA

andωAB . It would seem rather odd to have some co
ponents of the field strength set arbitrarily to ze
while the others remain untouched. The gauge in
pretation of even-dimensional Lovelock–Born–Infe
gravity is thus spoiled by the lack of invariance of t
action (1) under infinitesimal (A)dS boosts.

A truly (A)dS-invariant action for even as well a
for odd dimensions was constructed in Ref. [4] us
the Stelle–West formalism [5] for non-linear gau
theories. The action is

S
(D)
SW =

∫ [D/2]∑
p=0

αpεA1···AdRA1A2 · · ·RA2p−1A2p

× V A2p+1 · · ·V AD,

where

RAB = dWAB +WA
CW

CB,
V A =ΩA
B(coshz)eB +ΩA

B

(
sinhz

z

)
Dωζ

B,

WAB = ωAB + σ

l2

[(
sinhz

z

)
eC

+
(

coshz− 1

z2

)
Dωζ

C

]
× (

ζAδBC − ζBδAC
)
,

with

(2)ΩA
B(u)≡ uδAB + (1− u)

ζAζB

ζ 2 .

HereζA corresponds to the so-called AdS coordina
which parametrizes the coset space SO(D+ 1)/
SO(D), andz= ζ/l.

The method devised in Ref. [4] allows for the eve
dimensional action to become (A)dS gauge invaria
The same construction can be applied in odd dim
sions, where its only outcome is the addition o
boundary term to the Chern–Simons action.

(2n− 1)-dimensional gravity has attracted a gro
ing attention in recent years, both as a good theore
laboratory for a possible quantum theory of grav
and as a limit of the so-called M-theory. In this conte
it is then interesting to establish a clear link betwe
D = 2n andD = 2n−1 gravities by a dimensional re
duction. This is the aim of the present Letter and i
achieved in the framework of a gauge theoretical f
mulation of both theories. In fact, as is shown in [3,
gravity in 2n − 1 and 2n dimensions can be formu
lated as a gauge theory of the AdS group. In 2n− 1
dimensions this formulation is especially attract
as the Lanczos–Lovelock action becomes the Che
Simons term of the AdS group. Such a Chern–Sim
action with the correct AdS gauge transformatio
can then be derived by dimensionally reducing
2n dimensional Lanczos–Lovelock action in its gau
theoretical formulation.

In [6] was proved, in the context of a Poinca
gauge theoretical formulation, that pure gravity
3 + 1 dimensions can be dimensionally reduced
gravity in 2+ 1 dimensions. However, the mechanis
of Grignani–Nardelli is not applicable in the conte
of an AdS gauge theoretical formulation. One of
goals of this Letter is to find a generalization
the procedure of Grignani–Nardelli that permits,
the context of an AdS gauge theoretical formulati
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dimensions.

2. Grignani–Nardelli procedure and AdS
invariance

Latin letters from the beginning of the alphab
will be used for tangent space indices;A,B,C =
1,2, . . . ,D, and a, b, c = 1,2, . . . , d . Greek letters
and Latin letters from the middle of the alphabet w
denote space–time indices;λ,µ, ν = 1,2, . . . ,D, and
i, j, k = 1,2, . . . , d . Fields belonging tod = D − 1
dimensions will be distinguished by underlining,
in ωab. Exterior derivatives will be denoted asd =
dxµ ∂µ andd = dxi ∂i . First, we consider the dimen
sional reduction from 3+ 1 to 2+ 1 dimensions. The
Lovelock–Born–Infeld Lagrangian inD = 4 is given
by

L
(4)
BI = κ

4
εABCD

(
RAB + 1

l2
VAVB

)

×
(
RCD + 1

l2
VCVD

)
,

where

RAB ≡ dWAB +WA
CW

CB

is the curvature tensor. This Lagrangian can be wri
in the form

L
(4)
BI = κεabc

(
Rab + 1

l2
VaVb

)(
Rc4 + 1

l2
VcV4

)
,

where we have usedεabc4 = εabc.

Method 1. Table A of [6] can be written as

eA = (
ea, e2n) = (

ea, dx2n),
ωAB =

[
ωab ωa,2n

ω2n,b ω2n,2n

]
=

[
ωab 0
0 0

]
,

ζA = (
ξa, ζ 2n) = (

ζ a,0
)
.

This means

Va = V a,

V4 = (coshz) dx4,

Rab =Rab,

Ra4 = −m2DW

[(
sinhz

z

)
ζ a

]
dx4.
By substituting these results inL(4)
BI one gets

L
(3)
red= κ

�
εabc

{
(coshz)

(
Rab + 1

�2
V aV b

)
V c

−
(
Rab + 1

�2V
aV b

)

×DW

[(
sinhz

z

)
ζ c

]}
.

Since

εabcV
aV bDWAc

= d
(
εabcV

aV bAc
) − 2εabcT aV bAc,

we have

L
(3)
red= κ

�
(coshz)εabc

(
Rab + 1

�2
V aV b

)
V c

+ 2κ

�3

(
sinhz

z

)
εabcT aV bζ c

+ surface term

which it is very different of the Chern–Simons L
grangian in 2+ 1 dimensions.

Method 2. Table B of [6] can be written as

eA = (
ea, e2n) = (

ea, dx2n),
ωAB =

[
ωab ωa,2n

ω2n,b ω2n,2n

]
=

[
ωab 1

γ
V a

− 1
γ
V b 0

]
,

ζA = (
ζ a, ζ 2n) = (0, γ ).

This means

Va =
(

sinhz

z

)
V a,

V4 = dx4,

Rab =Rab − 1

γ 2

(
cosh2 ẑ

)
V aV b,

Ra4 = 1

γ
(coshz)DωV

a,

with z=mγ .
By substituting these results inL(4)

BI one gets

L
(3)
red= κ

l

(
sinhz

z

)
εabc

(
Rab − 1

γ 2V
aV b

)
V c,

which it is again different from the Chern–Simo
Lagrangian in 2+ 1 dimensions. Similar results a
obtained for higher dimensions.
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3. Generalization

We now consider a generalization of the me
anism of Grignani–Nardelli. The basic idea is t
following. Let SD be an action functional defined a
the integral of a LagrangianD-form LD over aD-
dimensional manifoldMD . Let us explicitly perform
one integration out of theD. We are then left with the
integral of ad-form over ad-dimensional manifold
Md . Relabel the fields in this integral in a convenie
way and call thed-formLd . Its integral overMd then
becomes what we callSd . Therefore, in general,

(3)SD =
∫
MD

LD =
∫
Md

Ld = Sd,

where

(4)Ld =
∫

1 dim

LD.

Consider a surfaceσ(x)= const and a vector fiel
n not lying on the surface; i.e.,In(dσ) = 0, whereIξ
is the contraction operator. It will prove convenient
normalize the vectorn to make it fulfill the condition
In(dσ)= 1.

A p-form field ψ living in D dimensions can
always be decomposed according to

(5)ψ = ψ̂ + ψ̌,

where we have defined̂ψ ≡ dσInψ , ψ̌ ≡ In(dσψ).

The two fields ψ̂ and ψ̌ together carry the sam
information as the original fieldψ , as can be seen from
(5). Theψ̌ -component ofψ lies entirely on the surfac
σ(x) = const, whileψ̂ retains that part ofψ which
goes in the direction ofn.

When this decomposition is applied to theD-form
LagrangianLD , one findsL̂D = dσInLD , ĽD = 0.
This means that it is possible to integrateLD = L̂D

overσ to obtain thed-dimensional LagrangianLd as

(6)Ld =
∫
σ

dσ InLD.

The action is written as

(7)SD =
∫
Md

Ld ,
whereMd is a d-dimensional manifold that belong
to the equivalence class of manifolds induced byσ

(an example is shown below). It is perhaps interes
to note that so far there is no need to assume
the integrated direction has any especial feature s
as being compact or extremely curved; the reduc
procedure remains well-defined whether we m
these assumptions or not.

Now we consider the simple caseσ(x) = xD;
that is, we deal with slices of constantxD across
D-dimensional space–time. A natural choice forn

is thus n = ∂D ≡ ∂/∂xD, which satisfiesIn dσ =
I∂D dx

D = 1. With these choices, thed-form La-
grangianLd may be written as

(8)(Ld )i1···id =
∫
xD

(LD)i1···idD dxD,

andMd is simply anyxD = const manifold. Forall of
them, the integral

(9)Sd =
∫
Md

Ld

has the same value. However, the relabeling of
fields that remains to be done in (9) may be m
natural on one specific surface.

There is much freedom in the way this fiel
relabeling process is performed, as the only str
constraints come from symmetries. In general,
original fields inLD transform locally under a grou
G overMD , leavingLD invariant. On the other hand
the relabeled fields that enterLd must transform lo-
cally under a groupG′ overMd , leavingLd invariant.
However, the LagrangianLd is still invariant under
the G group, which gets realized now in a diffe
ent way. Thus, the relabeling process must be car
out in such a way that this requirement is satisfi
A good example is provided by the spin connect
ωAB . Under a local, infinitesimal Lorentz transform
tion Λ = 1 + 1

2λ
ABJAB defined overMD , it changes

by δωAB = −DλAB. Our question now is, what com
ponents of this SO(D) connection may be relabeled
the SO(d) connectionωab? To find the answer, pe
form anMd -local SO(d) transformation onωAB , i.e.,
demand that the SO(D) infinitesimal parametersλAB

satisfy the conditions∂DλAB = 0, λA,D = 0. These
conditions turn the remainingλab into the right pa-
rameters for a SO(d) infinitesimal transformation. I
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is straightforward to show that, when this is the ca
we haveδω̌ab = −Ďλab, δω̂ab = λacω̂

cb + λbcω̂
ac,

where Ď is the exterior covariant derivative in th
connectionω̌ab. These last equations express thatω̌ab

transforms as a SO(d)-connection, whileω̂ab behaves
as a SO(d)-tensor. Therefore, an identification such

(10)ω̌ab → ωab + [
SO(d)-tensor

]ab
seems quite reasonable. In general, one simple
to respect the relevant symmetries is to identify
components of aD-dimensional field with those of th
correspondingd-dimensional one.

Here we shall perform this kind of identifications
their simplest possible form. Many components of
fields will be frozen to zero; this corresponds to o
early assertion that we are only interested (by no
in showing the possibility of gettingd-dimensional
gravity from its higher-dimensional version. This is
longer true, of course, when we face the full dime
sional reduction procedure, for in this case freez
some components of the fields yields a reduced ga
group as well.

4. The Lanczos–Lovelock action

We shall start our dimensional reduction proc
with theD-dimensional LL action

SD =
∫ [D/2]∑

p=0

αpεA1···AdRA1A2 · · ·RA2p−1A2p

(11)× VA2p+1 · · ·V Ad .

A more suitable version of action (11) is

SD =
∫
MD

[(D−1)/2]∑
p=0

(D − 2p)αpεa1···ad

×Ra1a2 · · ·Ra2p−1a2pV a2p+1 · · ·V adV D

+ 2(−1)D
∫
MD

[D/2]∑
p=1

pαpεa1···ad

×Ra1a2 · · ·Ra2p−3a2p−2Ra2p−1,D

(12)× V a2p · · ·V ad .

The first term in (12) shows that it isalways
possible to obtain a LL action ind dimensions starting
from a LL action defined inD = d + 1.
The coefficientsαp in (11) are selected accordin
to the criterion that the equations of motion fu
determine the dynamics for as many component
the independent fields as possible. This analysis le
to [4]

(13)

αp =




κD
D−2p l

−(D−2p−1)
(D−1

2
p

)
whenD is odd,

κD
κD
D
l−(D−2p−1)

(D
2
p

)
whenD is even.

A well-defined dynamics inD dimensions leads t
a well-defined dynamics ind dimensions; however, w
shall additionally demand that the purely gravitatio
terms in the reduced action produce well-defin
dynamics as well. This means that the coefficientsαp
must be reduced accordingly; that is, the coefficient
the reduced gravitational Lagrangian must corresp
to α(d)p as given in (13), withD → d .

We consider the dimensional reduction fromD =
even to d = D − 1 = odd. First we note that th
action (11) includes Euler’s topological invariant f
p =D/2, and we may write it as

SD =
∫
MD

[d/2]∑
p=0

α(D)
p εA1···ADRA1A2 · · ·RA2p−1A2p

× V A2p+1 · · ·VAD

+ α
(D)
D/2

∫
MD

εA1···ADRA1A2 · · ·RAD−1AD .

This action is decomposed as

SD =
∫
MD

[d/2]∑
p=0

(D − 2p)α(D)
p εa1···ad

×Ra1a2 · · ·Ra2p−1a2pV a2p+1 · · ·V adV D

+ 2
∫
MD

[d/2]∑
p=1

pα(D)
p εa1···ad

×Ra1a2 · · ·Ra2p−3a2p−2Ra2p−1DV a2p · · ·V ad

(14)+ α
(D)
D/2

∫
MD

εA1···ADRA1A2 · · ·RAD−1AD .

In this case the relation between theαp coefficients in
D andd dimensions is given by [cf. Eq. (13)]

(15)
1 κD

(d − 2p)α(d)p = (D − 2p)α(D)
p .
l κd
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Plugging (15) into (14), we are led to

(16)SD = S
(G1)
D + S

(I)
D + S

(G2)
D ,

where

(17)

S
(G1)
D = 1

l

κD

κd

∫
MD

[d/2]∑
p=0

α(d)p (d − 2p)εa1···ad

×Ra1a2 · · ·Ra2p−1a2p

× V a2p+1 · · ·V adV D,

(18)

S
(I)
D = 2

∫
MD

[d/2]∑
p=1

pα(D)
p εa1···ad

×Ra1a2 · · ·Ra2p−3a2p−2Ra2p−1D

× V a2p · · ·V ad ,

(19)S
(G2)
D = κDl

D

∫
MD

εA1···ADRA1A2 · · ·RAD−1AD .

Now we show that it is possible to obtain an acti
for d = D − 1 dimensional gravity from the corre
sponding action inD dimensions. Any identification
in the spirit of (10) will do the job; for example,

(20)V̌ a → V a, V̂ D → dxD, W̌ab →Wab.

Strictly speaking, one must perform a series exp
sion of the fields on thexD coordinate. ThexD-
independent term in this expansion leads, with
given identifications, to gravity ind = D − 1 dimen-
sions. The last term, which does not contribute
theD-dimensional equations of motion, is the Cher
Simons action for∂MD , i.e.,

S
(G2)
D = κD

κd

∫
∂MD

L(CS)
d .

The Chern–Simons term,S(G2)
D , forces us to take a

Md the boundary ofMD , that is,Md = ∂MD . In this
way the freedom we initially had to pick any manifo
out of the equivalence class induced byσ is lost, and
we are left with a precise choice forMd .

It is clear from the form ofS(G1)
D that, in order to ob-

tain well-defined dynamics for the gravitational sec
alone, one needs to integrate the fields over thexD co-
ordinatebefore performing the identification proces
This is due to the presence of the extra(d−2p) factor,
which precludesS(G1)

D from leading to well-defined
dynamics. Also, the zero mode hypothesis used in
dimensions seems useless here, because we need
kind of dependence on thexD-coordinate to have
well-defined action for gravity ind dimensions. With
this in mind, we shall takeMd = ∂MD and parame
trize thexD-coordinate in such a way that it rang
through−∞ < xD � 0, with xD = 0 corresponding
to the boundary ofMD . We shall additionally assum
that the vielbein may be written as

V a = exp
(
kxD

)
V a

0 ,

V D = dxD,

wherek is a real, positive constant with dimensio
of [length]−1 and V a

0 and Wab are taken to be
xD-independent. Clearly,V a

0 corresponds toV a
0 =

V a(xD = 0).
With these assumptions, the action (17) takes

form

S
(G1)
D = 1

l

κD

κd

∫
MD

[d/2]∑
p=0

α(d)p (d − 2p)

× exp
(
k(d − 2p)xD

)
εa1···ad

×Ra1a2 · · ·Ra2p−1a2pV
a2p+1
0 · · ·V ad

0 dxD.

Integration overxD from xD = −∞ to xD = 0 leads
to

S
(G1)
D = 1

kl

κD

κd

∫
Md

[d/2]∑
p=0

α(d)p εa1···ad

(21)×Ra1a2 · · ·Ra2p−1a2pV
a2p+1
0 · · ·V ad

0 .

The further addition ofS(G1)
D andS(G2)

D finally yields

S
(red)
d = κ

(red)
d

∫
Md

[d/2]∑
p=0

α(d)p εa1···ad

(22)×Ra1a2 · · ·Ra2p−1a2pV
a2p+1
0 · · ·V ad

0 ,

where

(23)κ
(red)
d = κD

κd

[
1

kl
+ 1

]
.

It is now clear that the identifications (20) lead to
well-defined action for gravity ind dimensions, since
the coefficients in the action (22) correspond to th
given in (13).
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From Eqs. (56)–(59) of [4] we can see that (22) c
be written as

S
(red)
d = κ

(red)
d

∫
Md

L(2n−1)
CS ,

where

L(2n−1)
CS =

n−1∑
p=0

l−(2n−1−2p)

(2n− 1− 2p)
εa1···ad

×Ra1a2 · · ·Ra2p−1a2pea2p+1 · · ·ead .
It is perhaps necessary to note that the proced

here developed is also valid in the dimensional red
tion fromD = odd tod =D − 1. In this case

(24)(D − 2p)α(D)
p = d

l

κD

κd
α(d)p ,

so that the action (11) can be written as

SD = d

l

κD

κd

∫
MD

d/2∑
p=0

α(d)p εa1···ad

×Ra1a2 · · ·Ra2p−1a2pV a2p+1 · · ·V adV D

− 2
∫
MD

d/2∑
p=1

pα(D)
p εa1···ad

×Ra1a2 · · ·Ra2p−3a2p−2Ra2p−1,DV a2p · · ·V ad .

From this expression it is apparent that it is poss
to obtain an action ford-dimensional gravity from the
corresponding action inD = d + 1 dimensions. Any
identification in the spirit of (10) will do the job; fo
example (20). Strictly speaking, one must perform
series expansion of the fields on thexD coordinate.
ThexD-independent term in this expansion leads, w
the given identifications, to gravity ind = D − 1 di-
mensions. This means that even-d gravity obtained
from its odd-D partner always posses an empty u
verse solution, no matter what choice is made
theMd -manifold inside the equivalence class induc
by σ .

5. Conclusions

We have generalized the dimensional reduct
mechanism of Grignani–Nardelli [6] in a way th
permits obtaining Euler–Chern–Simons gravity fro
Lovelock–Born–Infeld gravity. The failure of the pro
cedure of Grignani–Nardelli in obtaining of the a
propriate coefficients that lead to the Chern–Sim
has its origin in the fact that both in even dimensio
and in odd dimensions the coefficients can be writ
uniquely as

α(d)p = κ
l−(d−2p)

d − 2p

(
n− 1

p

)
with n= [(d + 1)/2] which can split as

α(2n−1)
p = κ

l−(2n−1−2p)

2n− 1− 2p

(
n− 1

p

)
,

α(2n)p = κ

2n
l−(2n−2p)

(
n

p

)
.

The binomial coefficients that appear in both ca
depend onn and not on the dimensionality of spac
time. When we go from an even dimensionD to an
odd dimensiond = D − 1, n remains constant. Thu
the coefficients are not reduced in a way that lead
a Chern–Simons theory.
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