2,353 research outputs found

    Time domain beam propagation method for the simulation of temporal solitons in periodic media

    Get PDF
    A time domain beam propagation method for the simulation of optical pulses propagating through Kerr-nonlinear structures is presented. The method is verified by simulation of the known solitary wave solutions in nonlinear periodic medi

    B/P Doping in
 application of 
silicon oxynitride based integrated
 optics

    Get PDF
    In this paper, gaseous precursors containing boron or phosphorous were intentionally introduced in the deposition of SiON layers and upper SiO2 claddings. The measurements show that the as-deposited B/P-doped SiON layers contain less hydrogen than undoped layers. Furthermore, the necessary annealing temperature for elimination of hydrogen related absorption (propagation loss) is greatly reduced in B/P-doped layers

    Light Turning Mirrors in SiON Optical Waveguides for Hybrid Integration with CMOS Photo-detectors

    Get PDF
    A new method is proposed for hybrid integration of SiON optical waveguides and standard CMOS photo-detectors based on anisotropic etching of 45° facets in a Si substrate. After removal of anisotropically etched Si structures in cladding SiO2, the fabricated total-internal-reflection mirrors can direct the output of the waveguides to photo-detectors placed on top of the chip. The metal-free fabrication process, designed to create these mirrors, is convenient for batch production. Fourier optics based simulations predict that the reflection efficiency of the mirrors is 68.5 %. The far field pattern obtained from the fabricated device is similar to the simulated one

    45° light turning mirrors for hybrid integration of silica optical waveguides and photo-detectors

    Get PDF
    For hybrid integration of an optical chip with an electronic chip with photo diodes and electronic processing, light must be coupled from the optical chip to the electronic chip. This paper presents a method to fabricate metal-free 45° quasi-total internal reflecting mirrors in optical chips that enable 90° out-of-plane light coupling between flip-chip bonded chips. This method is fully compatible with fabrication of conventional optical chips. The mirrors are created using anisotropic etching of 45° facets in a Si substrate followed by fabrication of optical structures. After removal of the mirror-defining Si structures by isotropic etching, the obtained air-optical structure interface directs the output of the waveguides to out-of-plane photo detectors that are mounted flip-chip on the optical chip. Simulations show a reflection efficiency of 72.3 %, while experimentally 47% was measured on a not fully optimized first batch

    Use of integrated optical waveguide probes as an alternative to fiber probes for sensing of light backscattered from small volumes

    Get PDF
    We show that for light collection from thin samples, integrated probes can present a higher efficiency than conventional fiber probes, despite having a smaller collection area. Simulation results are validated by experiments

    Climate research Netherlands : research highlights

    Get PDF
    In the Netherlands the temperature has risen, on average, by 1.6°C since 1900. Regional climate scenarios for the 21st century developed by the Dutch Royal Meteorological Institute [1] show that temperature in the Netherlands will continue to rise and mild winters and hot summers will become more common. On average winters will become wetter and extreme precipitation amounts will increase. The intensity of extreme rain showers in summer will increase and the sea level will continue to rise. Changing climate will affect all segments and sectors of the society and the economy of the Netherlands, but it also brings new opportunities for major innovation

    Stability of viscous long liquid filaments

    Get PDF
    We study the collapse of an axisymmetric liquid filament both analytically and by means of a numerical model. The liquid filament, also known as ligament, may either collapse stably into a single droplet or break up into multiple droplets. The dynamics of the filament are governed by the viscosity and the aspect ratio, and the initial perturbations of its surface. We find that the instability of long viscous filaments can be completely explained by the Rayleigh-Plateau instability, whereas a low viscous filament can also break up due to end pinching. We analytically derive the transition between stable collapse and breakup in the Ohnesorge number versus aspect ratio phase space. Our result is confirmed by numerical simulations based on the slender jet approximation and explains recent experimental findings by Castrejon-Pita et al., PRL 108, 074506 (2012).Comment: 7 page
    corecore