271 research outputs found

    (Quantum) Space-Time as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces

    Get PDF
    We develop a kind of pregeometry consisting of a web of overlapping fuzzy lumps which interact with each other. The individual lumps are understood as certain closely entangled subgraphs (cliques) in a dynamically evolving network which, in a certain approximation, can be visualized as a time-dependent random graph. This strand of ideas is merged with another one, deriving from ideas, developed some time ago by Menger et al, that is, the concept of probabilistic- or random metric spaces, representing a natural extension of the metrical continuum into a more microscopic regime. It is our general goal to find a better adapted geometric environment for the description of microphysics. In this sense one may it also view as a dynamical randomisation of the causal-set framework developed by e.g. Sorkin et al. In doing this we incorporate, as a perhaps new aspect, various concepts from fuzzy set theory.Comment: 25 pages, Latex, no figures, some references added, some minor changes added relating to previous wor

    Use of mixed methods designs in substance research: a methodological necessity in Nigeria

    Get PDF
    The utility of mixed methods (qualitative and quantitative) is becoming increasingly accepted in health sciences, but substance studies are yet to substantially benefit from such utilities. While there is a growing number of mixed methods alcohol articles concerning developed countries, developing nations are yet to embrace this method. In the Nigerian context, the importance of mixed methods research is yet to be acknowledged. This article therefore, draws on alcohol studies to argue that mixed methods designs will better equip scholars to understand, explore, describe and explain why alcohol consumption and its related problems are increasing in Nigeria. It argues that as motives for consuming alcohol in contemporary Nigeria are multiple, complex and evolving, mixed method approaches that provide multiple pathways for proffering solutions to problems should be embraced

    A typology of alcohol consumption among young people – A narrative synthesis

    Get PDF
    Background: Currently, alcohol consumption levels are significantly higher among younger age groups. However, previous research has noted the diversity of motivations and patterns. These patterns of drinking have yet to be synthesised into a typology. The aim of the current study was to synthesise information from studies that produced types of alcohol consumption among young people. Method: Quantitative and qualitative literature investigating the different types of drinkers among young people [aged 12–24 years], published in peer reviewed journals, were eligible for inclusion in this systematic review. MEDLINE, PsychInfo and CINAHL were systematically searched for relevant articles published between January 1st 2000 and December 31st 2014. Included papers were critically appraised. A narrative synthesis approach was employed based on guidance from the UK Economic and Social Research Council. Results: In total, 13 studies were eligible for inclusion: 11 quantitative, one qualitative and one mixed methods. Six classes of drinkers were formed within this typology. Abstainers reported no alcohol consumption. Light drinkers reported drinking small amounts of alcohol infrequently. In comparison, social and hedonistic drinkers drank most in social situations and to have fun. Heavy and harmful consumers reported increased volume and frequency of consumption including harmful consequences. Conclusion: Currently, policy makers are attempting to combat the high levels of harmful alcohol consumption among young people. The current typology provides guidance for targeted interventions in addition to a practical analytic tool in future research

    Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection

    Get PDF
    Elimination of pathogens is the basis of host resistance to infections; however, relationship between persisting pathogens and disease has not been clarified. Leishmania major infection in mice is an important model of host–pathogen relationship. Infected BALB/c mice exhibit high parasite numbers in lymph nodes and spleens, and a chronic disease with skin lesions, splenomegaly, and hepatomegaly, increased serum IgE levels and cytokine imbalance. Although numerous gene loci affecting these disease symptoms have been reported, genes controlling parasites’ elimination or dissemination have never been mapped. We therefore compared genetics of the clinical and immunologic symptomatology with parasite load in (BALB/c × CcS-11) F2 hybrids and mapped five loci, two of which control parasite elimination or dissemination. Lmr5 influences parasite loads in spleens (and skin lesions, splenomegaly, and serum IgE, IL-4, and IFNγ levels), and Lmr20 determines parasite numbers in draining lymph nodes (and serum levels of IgE and IFNγ), but no skin or visceral pathology. Three additional loci do not affect parasite numbers but influence significantly the disease phenotype—Lmr21: skin lesions and IFNγ levels, Lmr22: IL-4 levels, Lmr23: IFNγ levels, indicating that development of L. major-caused disease includes critical regulations additional to control of parasite spread

    Genetic Control of Resistance to Trypanosoma brucei brucei Infection in Mice

    Get PDF
    Trypanosoma brucei are extracellular protozoa transmitted to mammalian host by the tsetse fly. They developed several mechanisms that subvert host's immune defenses. Therefore analysis of genes affecting host's resistance to infection can reveal critical aspects of host-parasite interactions. Trypanosoma brucei brucei infects many animal species including livestock, with particularly severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to T. b. brucei. However, genes controlling susceptibility to this parasite have not been mapped. We analyzed the genetic control of survival after T. b. brucei infection using CcS/Dem recombinant congenic (RC) strains, each of which contains a different random set of 12.5% genes of their donor parental strain STS/A on the BALB/c genetic background. The RC strain CcS-11 is even more susceptible to parasites than BALB/c or STS/A. In F2 hybrids between BALB/c and CcS-11 we detected and mapped four loci, Tbbr1-4 (Trypanosoma brucei brucei response 1–4), that control survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have independent effects, Tbbr3 (chromosome 7) and Tbbr4 (chromosome 19) were detected by their mutual inter-genic interaction. Tbbr2 was precision mapped to a segment of 2.15 Mb that contains 26 genes

    A statistical model for the identification of genes governing the incidence of cancer with age

    Get PDF
    The cancer incidence increases with age. This epidemiological pattern of cancer incidence can be attributed to molecular and cellular processes of individual subjects. Also, the incidence of cancer with ages can be controlled by genes. Here we present a dynamic statistical model for explaining the epidemiological pattern of cancer incidence based on individual genes that regulate cancer formation and progression. We incorporate the mathematical equations of age-specific cancer incidence into a framework for functional mapping aimed at identifying quantitative trait loci (QTLs) for dynamic changes of a complex trait. The mathematical parameters that specify differences in the curve of cancer incidence among QTL genotypes are estimated within the context of maximum likelihood. The model provides testable quantitative hypotheses about the initiation and duration of genetic expression for QTLs involved in cancer progression. Computer simulation was used to examine the statistical behavior of the model. The model can be used as a tool for explaining the epidemiological pattern of cancer incidence

    Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation

    Get PDF
    In this paper, we investigate the pharmacokinetics and effect of doxorubicin and cisplatin in vascularized tumors through two-dimensional simulations. We take into account especially vascular and morphological heterogeneity as well as cellular and lesion-level pharmacokinetic determinants like P-glycoprotein (Pgp) efflux and cell density. To do this we construct a multi-compartment PKPD model calibrated from published experimental data and simulate 2-h bolus administrations followed by 18-h drug washout. Our results show that lesion-scale drug and nutrient distribution may significantly impact therapeutic efficacy and should be considered as carefully as genetic determinants modulating, for example, the production of multidrug-resistance protein or topoisomerase II. We visualize and rigorously quantify distributions of nutrient, drug, and resulting cell inhibition. A main result is the existence of significant heterogeneity in all three, yielding poor inhibition in a large fraction of the lesion, and commensurately increased serum drug concentration necessary for an average 50% inhibition throughout the lesion (the IC50 concentration). For doxorubicin the effect of hypoxia and hypoglycemia (“nutrient effect”) is isolated and shown to further increase cell inhibition heterogeneity and double the IC50, both undesirable. We also show how the therapeutic effectiveness of doxorubicin penetration therapy depends upon other determinants affecting drug distribution, such as cellular efflux and density, offering some insight into the conditions under which otherwise promising therapies may fail and, more importantly, when they will succeed. Cisplatin is used as a contrast to doxorubicin since both published experimental data and our simulations indicate its lesion distribution is more uniform than that of doxorubicin. Because of this some of the complexity in predicting its therapeutic efficacy is mitigated. Using this advantage, we show results suggesting that in vitro monolayer assays using this drug may more accurately predict in vivo performance than for drugs like doxorubicin. The nonlinear interaction among various determinants representing cell and lesion phenotype as well as therapeutic strategies is a unifying theme of our results. Throughout it can be appreciated that macroscopic environmental conditions, notably drug and nutrient distributions, give rise to considerable variation in lesion response, hence clinical resistance. Moreover, the synergy or antagonism of combined therapeutic strategies depends heavily upon this environment
    corecore