30 research outputs found

    Freeze-drying and lyopreservation of diblock and triblock poly(lactic acid)poly(ethylene oxide)(PLA-PEO) copolymer nanoparticles

    No full text
    In this study, the formulation and process parameters that determine successful production and long-term stability of freeze-dried poly(lactic acid) (PLA) nanoparticles with “hairy-like” poly(ethylene oxide) (PEO) surfaces were investigated. Nanoparticles with grafted (covalently bound) PEO coatings were produced by the salting-out method from blends of PLA and PLA–PEO diblock or triblock copolymers. PLA nanoparticles with physically adsorbed PEO were also produced. The redispersibility of the nanoparticles after freeze-drying under various conditions was assessed. The surface of the nanoparticles was characterized and classified in terms of “brush” and “loop” conformations. Upon freeze-drying, it appeared that the presence of PEO at the nanoparticle surface could severely impair the redispersibility of the particles, especially in the PEO-grafted systems. This effect was shown to be related to the amount and molecular weight of PEO in the various formulations. In most cases, particle aggregation was prevented by use of trehalose as lyoprotective agent. Increasing the concentration of particles in the suspension to be freeze-dried was shown to induce much less damage to the nanoparticles, and freezing the suspension at a very low temperature (−196°C) was found to further improve the lyoprotective effect. Most of the lyoprotected nanoparticles remained stable for at least 12 weeks at 4 and −25°C. The production and preservation of freeze-dried PLA–PEO diblock and triblock copolymer nanoparticles is feasible under optimized lyoprotective conditions

    pH-Dependent dissolving nano- and microparticles for improved peroral delivery of a highly lipophilic compound in dogs

    No full text
    RR01, a new highly lipophilic drug showing extremely low water solubility and poor oral bioavailability, has been incorporated into pH-dependent dissolving particles made of a poly(methacrylic acid-co-ethylacrylate) copolymer. The physicochemical properties of the particles were determined using laser-light-scattering techniques, scanning electron microscopy, high-performance liquid chromatography, and x-ray powder diffraction. Suspension of the free drug in a solution of hydroxypropylcellulose (reference formulation) and aqueous dispersions of pH-sensitive RR01-loaded nanoparticles or microparticles were administered orally to Beagle dogs according to a 2-block Latin square design (n =6). Plasma samples were obtained over the course of 48 hours and analyzed by gas chromatography/mass spectrometry. The administration of the reference formulation resulted in a particularly high interindividual variability of pharmacokinetic parameters, with low exposure to compound RR01 (AUC0–48h of 6.5 ÎŒg.h/mL and coefficient of variation (CV) of 116%) and much higher Tmax, as compared to both pH-sensitive formulations. With respect to exposure and interindividual variability, nanoparticles were superior to microparticles (AUC0–48h of 27.1 ÎŒg.h/mL versus 17.7 ÎŒg.h/mL with CV of 19% and 40%, respectively), indicating that the particle size may play an important role in the absorption of compound RR01. The performance of pH-sensitive particles is attributed to their ability to release the drug selectively in the upper part of the intestine in a molecular or amorphous form. In conclusion, pH-dependent dissolving particles have a great potential as oral delivery systems for drugs with low water solubility and acceptable permeation properties
    corecore