5,976 research outputs found

    High-Q nested resonator in an actively stabilized optomechanical cavity

    Get PDF
    Experiments involving micro- and nanomechanical resonators need to be carefully designed to reduce mechanical environmental noise. A small scale on-chip approach is to add an additional resonator to the system as a mechanical low-pass filter. Unfortunately, the inherent low frequency of the low-pass filter causes the system to be easily excited mechanically. Fixating the additional resonator ensures that the resonator itself can not be excited by the environment. This, however, negates the purpose of the low-pass filter. We solve this apparent paradox by applying active feedback to the resonator, thereby minimizing the motion with respect the front mirror of an optomechanical cavity. Not only does this method actively stabilize the cavity length, but it also retains the on-chip vibration isolation.Comment: Minor adjustments mad

    Simulation and analysis of in vitro DNA evolution

    Full text link
    We study theoretically the in vitro evolution of a DNA sequence by binding to a transcription factor. Using a simple model of protein-DNA binding and available binding constants for the Mnt protein, we perform large-scale, realistic simulations of evolution starting from a single DNA sequence. We identify different parameter regimes characterized by distinct evolutionary behaviors. For each regime we find analytical estimates which agree well with simulation results. For small population sizes, the DNA evolutional path is a random walk on a smooth landscape. While for large population sizes, the evolution dynamics can be well described by a mean-field theory. We also study how the details of the DNA-protein interaction affect the evolution.Comment: 11 pages, 11 figures. Submitted to PNA

    Incorporating Inertia Into Multi-Agent Systems

    Get PDF
    We consider a model that demonstrates the crucial role of inertia and stickiness in multi-agent systems, based on the Minority Game (MG). The inertia of an agent is introduced into the game model by allowing agents to apply hypothesis testing when choosing their best strategies, thereby reducing their reactivity towards changes in the environment. We find by extensive numerical simulations that our game shows a remarkable improvement of global cooperation throughout the whole phase space. In other words, the maladaptation behavior due to over-reaction of agents is removed. These agents are also shown to be advantageous over the standard ones, which are sometimes too sensitive to attain a fair success rate. We also calculate analytically the minimum amount of inertia needed to achieve the above improvement. Our calculation is consistent with the numerical simulation results. Finally, we review some related works in the field that show similar behaviors and compare them to our work.Comment: extensively revised, 8 pages, 10 figures in revtex

    Information systems for development planning

    Get PDF
    In this paper the changing approaches to development planning are described, from the economic-growth oriented strategies of the 1950s and the 1960s to the contemporary emphasis on alleviating poverty and meeting basic needs. The process of development planning includes several phases; the identification of aims, analysis, plan formulation and detailed design, Implementation, controls, updating, and feedback and adjustment. This process has become much more sophisticated in recent years, but in general, the comprehensiveness and refinement of a development plan depends on the type and scope of the data available. At the same time, the very process of planning may reveal deficiencies In data and thus act as an incentive to improved information gathering. Three information systems are needed for development planning: a resources information system, whose importance has been recognised for some time but which has frequently consisted of a series of isolated and uncoordinated inventories and studies; a scientific and technological information system' and a management information system, whose Importance has frequently been neglected. Information in these areas must be collected, communicated to government policy makers and administrators to meet their immediate needs, and stored in a convenient and coordinated form so that it will be accessible in the future. More global surveys and inventories will be needed during the eiarly stages of development planning, and detailed project and programme surveys will be needed during the design and implementation stages

    Response Surface Modelling Utilizing Lithographic Process Simulation

    Get PDF
    A method of incorporating statistically designed fractional factorial experiments into lithographic process simulation software (PROL1TH/2) has been used to determine input factor interrelationships inherent within a lithographic process. Rotatable Box-Behnken designs with 3 centerpoints were utilized for the experiment. The response surface methodology (RSM) approach was used to analyze the influence of independent factors on a dependant response, and optimize each process. A method of steepest ascent was utilized to produce first-order models, which were verified by lack of fit testing. As optimum operating points were approached, a second-order model was fitted and analyzed. A series of experiments studying the effects of prebake, exposure, post-exposure bake, and development on critical dimension and profile in PROLITH/2 produced response surfaces relating each main factor effect as well as non-linear and interaction effects. Additionally, experiments were conducted to study effects of numerical aperture, coherence, feature size, defocus, and flare on aerial image contrast. Process optimization for the target response value as well as process latitude as it relates to all factors simultaneously was then possible through use of the response surface

    Confinement Models at Finite Temperature and Density

    Full text link
    In-medium chiral symmetry breaking in confining potential models of QCD is examined. Past attempts to analyse these models have been hampered by infrared divergences that appear at non-zero temperature. We argue that previous attempts to circumvent this problem are not satisfactory and demonstrate a simple resolution. We also show that the expectation that confining models do not exhibit a chiral phase transition is incorrect. The effect of summing ring diagrams is investigated and we present the first determination of the temperature-density phase diagram for two model systems. We find that observables and the phase structure of the confinement models depend strongly on whether quark polarisation is accounted for. Finally, it appears that standard confinement models cannot adequately describe both hadron phenomenology and in-medium properties of QCD.Comment: 9 pages, 10 figures. Version to appear in PR

    Schwinger Boson Formulation and Solution of the Crow-Kimura and Eigen Models of Quasispecies Theory

    Full text link
    We express the Crow-Kimura and Eigen models of quasispecies theory in a functional integral representation. We formulate the spin coherent state functional integrals using the Schwinger Boson method. In this formulation, we are able to deduce the long-time behavior of these models for arbitrary replication and degradation functions. We discuss the phase transitions that occur in these models as a function of mutation rate. We derive for these models the leading order corrections to the infinite genome length limit.Comment: 37 pages; 4 figures; to appear in J. Stat. Phy

    The Bright and Dark Sides of High-Redshift starburst galaxies from {\it Herschel} and {\it Subaru} observations

    Get PDF
    We present rest-frame optical spectra from the FMOS-COSMOS survey of twelve z1.6z \sim 1.6 \textit{Herschel} starburst galaxies, with Star Formation Rate (SFR) elevated by ×\times8, on average, above the star-forming Main Sequence (MS). Comparing the Hα\alpha to IR luminosity ratio and the Balmer Decrement we find that the optically-thin regions of the sources contain on average only 10\sim 10 percent of the total SFR whereas 90\sim90 percent comes from an extremely obscured component which is revealed only by far-IR observations and is optically-thick even in Hα\alpha. We measure the [NII]6583_{6583}/Hα\alpha ratio, suggesting that the less obscured regions have a metal content similar to that of the MS population at the same stellar masses and redshifts. However, our objects appear to be metal-rich outliers from the metallicity-SFR anticorrelation observed at fixed stellar mass for the MS population. The [SII]6732_{6732}/[SII]6717_{6717} ratio from the average spectrum indicates an electron density ne1,100 cm3n_{\rm e} \sim 1,100\ \mathrm{cm}^{-3}, larger than what estimated for MS galaxies but only at the 1.5σ\sigma level. Our results provide supporting evidence that high-zz MS outliers are the analogous of local ULIRGs, and are consistent with a major merger origin for the starburst event.Comment: 6 pages, 4 figures, Accepted for publication in ApJ Letter

    Universality class of the restricted solid-on-solid model with hopping

    Full text link
    We study the restricted solid-on-solid (RSOS) model with finite hopping distance l0l_{0}, using both analytical and numerical methods. Analytically, we use the hard-core bosonic field theory developed by the authors [Phys. Rev. E {\bf 62}, 7642 (2000)] and derive the Villain-Lai-Das Sarma (VLD) equation for the l0=l_{0}=\infty case which corresponds to the conserved RSOS (CRSOS) model and the Kardar-Parisi-Zhang (KPZ) equation for all finite values of l0l_{0}. Consequently, we find that the CRSOS model belongs to the VLD universality class and the RSOS models with any finite hopping distance belong to the KPZ universality class. There is no phase transition at a certain finite hopping distance contrary to the previous result. We confirm the analytic results using the Monte Carlo simulations for several values of the finite hopping distance.Comment: 13 pages, 3 figure
    corecore