148 research outputs found

    Dark Universe and distribution of Matter as Quantum Imprinting: the Quantum Origin of Universe

    Get PDF
    In this paper we analyze the Dark Matter problem and the distribution of matter through two different approaches, which are linked by the possibility that the solution of these astronomical puzzles should be sought in the quantum imprinting of the Universe. The first approach is based on a cosmological model formulated and developed in the last ten years by the first and third authors of this paper; the so-called Archaic Universe. The second approach was formulated by Rosen in 1933 by considering the Friedmann-Einstein equations as a simple one-dimensional dynamical system reducing the cosmological equations in terms of a Schroedinger equation. As an example, the quantum memory in cosmological dynamics could explain the apparently periodic structures of the Universe while Archaic Universe shows how the quantum phase concernts not only an ancient era of the Universe, but quantum facets permeating the entire Universe today.Comment: 18 page

    Noise thermometry in narrow 2D electron gas heat baths connected to a quasi-1D interferometer

    Full text link
    Thermal voltage noise measurements are performed in order to determine the electron temperature in nanopatterned channels of a GaAs/AlGaAs heterostructure at bath temperatures of 4.2 and 1.4 K. Two narrow two-dimensional (2D) heating channels, close to the transition to the one-dimensional (1D) regime, are connected by a quasi-1D quantum interferometer. Under dc current heating of the electrons in one heating channel, we perform cross-correlated noise measurements locally in the directly heated channel and nonlocally in the other channel, which is indirectly heated by hot electron diffusion across the quasi-1D connection. We observe the same functional dependence of the thermal noise on the heating current. The temperature dependence of the electron energy-loss rate is reduced compared to wider 2D systems. In the quantum interferometer, we show the decoherence due to the diffusion of hot electrons from the heating channel into the quasi-1D system, which causes a thermal gradient.Comment: 6 pages, 5 figure

    Magnetoelectric effects in an organo-metallic quantum magnet

    Full text link
    We observe a bilinear magnetic field-induced electric polarization of 50 μC/m2\mu C/m^2 in single crystals of NiCl2_2-4SC(NH2_2)2_2 (DTN). DTN forms a tetragonal structure that breaks inversion symmetry, with the highly polar thiourea molecules all tilted in the same direction along the c-axis. Application of a magnetic field between 2 and 12 T induces canted antiferromagnetism of the Ni spins and the resulting magnetization closely tracks the electric polarization. We speculate that the Ni magnetic forces acting on the soft organic lattice can create significant distortions and modify the angles of the thiourea molecules, thereby creating a magnetoelectric effect. This is an example of how magnetoelectric effects can be constructed in organo-metallic single crystals by combining magnetic ions with electrically polar organic elements.Comment: 3 pages, 3 figure

    Genetic variability of the ovine αs1-casein

    Get PDF
    The casein genetic polymorphisms are important for their effects on quantitative traits and technological properties of milk. At the αs1-casein (CSN1S1) level three genetic variants were characterised (A, C, D) in ovine milk (Ferranti et al., 1995)

    Characterization of the casein gene complex in West Africa goats and description of a new αs1-casein polymorphism

    Get PDF
    The analysis of casein polymorphisms was carried out in West Africa goat populations: Red Sokoto (n = 57), West African Dwarf Nigeria (n = 27), West African Dwarf Cameroon (n = 39), and Borno (n = 37). The 4 casein genes alphas1 (CSN1S1), beta (CSN2), alphas2 (CSN1S2), and kappa (CSN3) were typed at the DNA level. No null alleles were found in any of the genes analyzed. A PCR single-strand conformation polymorphism method was implemented for the identification of CSN1S1*F allele simultaneously with A/01, B/E, N and the new allele. The allele differed from CSN1S1*B by a synonymous transversion TCG->TCT in the codon corresponding to Ser66 of the mature protein. The new allele, named CSN1S1*B', occurred at a high frequency in all the populations, ranging from 0.295 (West African Dwarf Cameroon) to 0.405 (Borno). A greater frequency was found for alleles associated with high alphas1-casein quantity, as has already been observed in the goat populations from the Mediterranean area. The intermediate E allele occurred only in the Red Sokoto and at a low frequency. The faint F allele occurred in 3 populations at frequencies lower than 0.03. Linkage disequilibrium occurred in all the populations, with highly significant differences in Borno, Red Sokoto, and West Africa Dwarf Nigeria, and significant differences in West Africa Dwarf Cameroon. Only 10 haplotypes showed frequencies >= 0.05 in at least 1 of the 4 populations considered, and the overall frequency was >0.1 only for 4 haplotypes: BAAB, B'ACA, ACAB, and BACA (in the order CSN1S1-CSN2-CSN1S2-CSN3). Haplotype BAAB, postulated as an ancestral haplotype in previous studies, was the most common haplotype in all breeds except Borno, where B'ACA was predominant. The results obtained are of considerable significance given that very little information exists on the subject for African goats. The high frequency of strong alleles in the calcium-sensitive caseins as well as the high linkage disequilibrium found among the casein genes in the African breeds analyzed may suggest that specific casein haplotypes have already been selected due to their advantages for nutrition. Haplotypes providing greater protein and casein content would increase the energy content of milk, thus resulting in more favorable growth and survival of young goats and humans consuming the milk
    • …
    corecore