341 research outputs found

    Genetic variation of male reproductive success in a laboratory population of Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For Anopheline mosquitoes, the vectors of human malaria, genetic variation in male reproductive success can have important consequences for any control strategy based on the release of transgenic or sterile males.</p> <p>Methods</p> <p>A quantitative genetics approach was used to test whether there was a genetic component to variation in male reproductive success in a laboratory population of <it>Anopheles gambiae</it>. Swarms of full sibling brothers were mated with a fixed number of females and their reproductive success was measured as (1) proportion of ovipositing females, (2) proportion of ovipositing females that produced larvae, (3) proportion of females that produced larvae, (4) number of eggs laid per female, (5) number of larvae per ovipositing female and (6) number of larvae per female.</p> <p>Results</p> <p>The proportion of ovipositing females (trait 1) and the proportion of ovipositing females that produced larvae (trait 2) differed among full sib families, suggesting a genetic basis of mating success. In contrast, the other measures of male reproductive success showed little variation due to the full sib families, as their variation are probably mostly due to differences among females. While age at emergence and wing length of the males were also heritable, they were not associated with reproductive success. Larger females produced more eggs, but males did not prefer such partners.</p> <p>Conclusion</p> <p>The first study to quantify genetic variation for male reproductive success in <it>A. gambiae </it>found that while the initial stages of male reproduction (i.e. the proportion of ovipositing females and the proportion of ovipositing females that produced larvae) had a genetic basis, the overall reproductive success (i.e. the mean number of larvae per female) did not.</p

    Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial.

    Get PDF
    BACKGROUND: Progress in malaria control is under threat by wide-scale insecticide resistance in malaria vectors. Two recent vector control products have been developed: a long-lasting insecticidal net that incorporates a synergist piperonyl butoxide (PBO) and a long-lasting indoor residual spraying formulation of the insecticide pirimiphos-methyl. We evaluated the effectiveness of PBO long-lasting insecticidal nets versus standard long-lasting insecticidal nets as single interventions and in combination with the indoor residual spraying of pirimiphos-methyl. METHODS: We did a four-group cluster randomised controlled trial using a two-by-two factorial design of 48 clusters derived from 40 villages in Muleba (Kagera, Tanzania). We randomly assigned these clusters using restricted randomisation to four groups: standard long-lasting insecticidal nets, PBO long-lasting insecticidal nets, standard long-lasting insecticidal nets plus indoor residual spraying, or PBO long-lasting insecticidal nets plus indoor residual spraying. Both standard and PBO nets were distributed in 2015. Indoor residual spraying was applied only once in 2015. We masked the inhabitants of each cluster to the type of nets received, as well as field staff who took blood samples. Neither the investigators nor the participants were masked to indoor residual spraying. The primary outcome was the prevalence of malaria infection in children aged 6 months to 14 years assessed by cross-sectional surveys at 4, 9, 16, and 21 months after intervention. The endpoint for assessment of indoor residual spraying was 9 months and PBO long-lasting insecticidal nets was 21 months. This trial is registered with ClinicalTrials.gov, number NCT02288637. FINDINGS: 7184 (68·0%) of 10 560 households were selected for post-intervention survey, and 15 469 (89·0%) of 17 377 eligible children from the four surveys were included in the intention-to-treat analysis. Of the 878 households visited in the two indoor residual spraying groups, 827 (94%) had been sprayed. Reported use of long-lasting insecticidal nets, across all groups, was 15 341 (77·3%) of 19 852 residents after 1 year, decreasing to 12 503 (59·2%) of 21 105 in the second year. Malaria infection prevalence after 9 months was lower in the two groups that received PBO long-lasting insecticidal nets than in the two groups that received standard long-lasting insecticidal nets (531 [29%] of 1852 children vs 767 [42%] of 1809; odds ratio [OR] 0·37, 95% CI 0·21-0·65; p=0·0011). At the same timepoint, malaria prevalence in the two groups that received indoor residual spraying was lower than in groups that did not receive indoor residual spraying (508 [28%] of 1846 children vs 790 [44%] of 1815; OR 0·33, 95% CI 0·19-0·55; p<0·0001) and there was evidence of an interaction between PBO long-lasting insecticidal nets and indoor residual spraying (OR 2·43, 95% CI 1·19-4·97; p=0·0158), indicating redundancy when combined. The PBO long-lasting insecticidal net effect was sustained after 21 months with a lower malaria prevalence than the standard long-lasting insecticidal net (865 [45%] of 1930 children vs 1255 [62%] of 2034; OR 0·40, 0·20-0·81; p=0·0122). INTERPRETATION: The PBO long-lasting insecticidal net and non-pyrethroid indoor residual spraying interventions showed improved control of malaria transmission compared with standard long-lasting insecticidal nets where pyrethroid resistance is prevalent and either intervention could be deployed to good effect. As a result, WHO has since recommended to increase coverage of PBO long-lasting insecticidal nets. Combining indoor residual spraying with pirimiphos-methyl and PBO long-lasting insecticidal nets provided no additional benefit compared with PBO long-lasting insecticidal nets alone or standard long-lasting insecticidal nets plus indoor residual spraying. FUNDING: UK Department for International Development, Medical Research Council, and Wellcome Trust

    Risk factors for malaria infection prevalence and household vector density between mass distribution campaigns of long-lasting insecticidal nets in North-western Tanzania.

    Get PDF
    BACKGROUND: Long-lasting insecticidal nets (LLINs) are the most widely deployed vector control intervention in sub-Saharan Africa to prevent malaria. Recent reports indicate selection of pyrethroid insecticide resistance is widespread in mosquito vectors. This paper explores risk factors associated with malaria infection prevalence and vector density between mass distribution campaigns, changes in net coverage, and loss of protection in an area of high pyrethroid resistance in Northwest Tanzania. METHODS: A cross sectional malaria survey of 3456 children was undertaken in 2014 in Muleba district, Kagera region west of Lake Victoria. Vector density was assessed using indoor light traps and outdoor tent traps. Anophelines were identified to species using PCR and tested for Plasmodium falciparum circumsporozoite protein. Logistic regression was used to identify household and environmental factors associated with malaria infection and regression binomial negative for vector density. RESULTS: LLIN use was 27.7%. Only 16.9% of households had sufficient nets to cover all sleeping places. Malaria infection was independently associated with access to LLINs (OR: 0.57; 95% CI 0.34-0.98). LLINs less than 2 years old were slightly more protective than older LLINs (53 vs 65% prevalence of infection); however, there was no evidence that LLINs in good condition (hole index < 65) were more protective than LLINs, which were more holed. Other risk factors for malaria infection were age, group, altitude and house construction quality. Independent risk factors for vector density were consistent with malaria outcomes and included altitude, wind, livestock, house quality, open eaves and LLIN usage. Indoor collections comprised 4.6% Anopheles funestus and 95.4% Anopheles gambiae of which 4.5% were Anopheles arabiensis and 93.5% were Anopheles gambiae sensu stricto. CONCLUSION: Three years after the mass distribution campaign and despite top-ups, LLIN usage had declined considerably. While children living in households with access to LLINs were at lower risk of malaria, infection prevalence remained high even among users of LLINs in good condition. While effort should be made to maintain high coverage between campaigns, distribution of standard pyrethroid-only LLINs appears insufficient to prevent malaria transmission in this area of intense pyrethroid resistance

    Intra-specific variation of sperm length in the malaria vector Anopheles gambiae: males with shorter sperm have higher reproductive success

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intra-specific variation in sperm length influences male reproductive success in several species of insects. In males of the malaria vector <it>Anopheles gambiae</it>, sperm length is highly variable but the significance of this variation is unknown. Understanding what determines the reproductive success of male mosquitoes is critical for controlling malaria, and in particular for replacing natural populations with transgenic, malaria-resistant mosquitoes.</p> <p>Methods</p> <p>A laboratory population of <it>A. gambiae </it>males was tested for intra-specific variation in sperm length. A full-sib quantitative genetic design was used to test for a genetic component of sperm length in <it>A. gambiae </it>males and estimate its heritability. This study also tested for a relationship between sperm length and male reproductive success in <it>A. gambiae</it>. Male reproductive success was measured as the proportions of inseminated and ovipositing females.</p> <p>Results</p> <p>There was intra-specific variation of sperm length in <it>A. gambiae</it>. There was no significant genetic variation in sperm length and its heritability was low (h<sup>2 </sup>= 0.18) compared to other insects. Sperm length was correlated with male body size (measured as wing length). Males with short sperm had significantly higher reproductive success than males with long sperm and this was independent of body size.</p> <p>Conclusion</p> <p>This is the first study to demonstrate intra-specific variation in sperm length in <it>A. gambiae </it>and that males with short sperm have higher reproductive success. That sperm length influences female oviposition is important for any strategy considering the release of transgenic males.</p

    Survivorship of Anopheles darlingi (Diptera: Culicidae) in Relation with Malaria Incidence in the Brazilian Amazon

    Get PDF
    We performed a longitudinal study of adult survival of Anopheles darlingi, the most important vector in the Amazon, in a malarigenous frontier zone of Brazil. Survival rates were determined from both parous rates and multiparous dissections. Anopheles darlingi human biting rates, daily survival rates and expectation of life where higher in the dry season, as compared to the rainy season, and were correlated with malaria incidence. The biting density of mosquitoes that had survived long enough for completing at least one sporogonic cycle was related with the number of malaria cases by linear regression. Survival rates were the limiting factor explaining longitudinal variations in Plasmodium vivax malaria incidence and the association between adult mosquito survival and malaria was statistically significant by logistic regression (P<0.05). Survival rates were better correlated with malaria incidence than adult mosquito biting density. Mathematical modeling showed that P. falciparum and P. malariae were more vulnerable to changes in mosquito survival rates because of longer sporogonic cycle duration, as compared to P. vivax, which could account for the low prevalence of the former parasites observed in the study area. Population modeling also showed that the observed decreases in human biting rates in the wet season could be entirely explained by decreases in survival rates, suggesting that decreased breeding did not occur in the wet season, at the sites where adult mosquitoes were collected. For the first time in the literature, multivariate methods detected a statistically significant inverse relation (P<0.05) between the number of rainy days per month and daily survival rates, suggesting that rainfall may cause adult mortality

    An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra

    Get PDF
    After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which are currently used to determine the parity status of mosquitoes, are very tedious and limited to few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study, we train an artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania (Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N = 91), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8% (N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively. These results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections

    Spatial distribution and male mating success of Anopheles gambiae swarms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae </it>mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave <it>in copula</it>. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model.</p> <p>Results</p> <p>We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the <it>per capita </it>mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site.</p> <p>Conclusions</p> <p>Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of <it>An. gambiae </it>and discussed possible factors that account for its variation. We found that swarms of <it>An. gambiae </it>conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the <it>An. gambiae </it>mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition.</p
    corecore