712 research outputs found
Changes in the fecal microbiota associated with a broad‐spectrum antimicrobial administration in hospitalized neonatal foals with probiotics supplementation
There is a wide array of evidence across species that exposure to antibiotics is associated with dysbiosis, and due to their widespread use, this also raises concerns also in medicine. The study aimed to determine the changes on the fecal microbiota in hospitalized neonatal foals administered with broad‐spectrum antimicrobials and supplemented probiotics. Fecal samples were collected at hospital admission (Ta), at the end of the antimicrobial treatment (Te) and at discharge (Td). Feces were analysed by next‐generation sequencing of the 16S rRNA gene on Illumina MiSeq. Seven foals treated with IV ampicillin and amikacin/gentamicin were included. The mean age at Ta was 19 h, the mean treatment length was 7 days and the mean time between Te and Td was 4.3 days. Seven phyla were identified: Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, TM7 and Verrucomicrobia. At Ta, Firmicutes (48.19%) and Proteobacteria (31.56%) were dominant. The alpha diversity decreased from Ta to Te, but it was the highest at Td. The beta diversity was higher at Ta than at Te and higher at Td than at Te. An increase in Akkermansia over time was detected. The results suggest that the intestinal microbiota of neonatal foals rapidly returns to a high diversity after treatment. It is possible that in foals, the effect of antimicrobials is strongly influenced or overshadowed by the time‐dependent changes in the developing gut microbiota
In situ immunofluorescent staining of autophagy in muscle stem cells
Increasing evidence points to autophagy as a crucial regulatory process to preserve tissue homeostasis. It is known that autophagy is involved in skeletal muscle development and regeneration, and the autophagic process has been described in several muscular pathologies and agerelated muscle disorders. A recently described block of the autophagic process that correlates with the functional exhaustion of satellite cells during muscle repair supports the notion that active autophagy is coupled with productive muscle regeneration. These data uncover the crucial role of autophagy in satellite cell activation during muscle regeneration in both normal and pathological conditions, such as muscular dystrophies. Here, we provide a protocol to monitor the autophagic process in the adult Muscle Stem Cell (MuSC) compartment during muscle regenerative conditions. This protocol describes the setup methodology to perform in situ immunofluorescence imaging of LC3, an autophagy marker, and MyoD, a myogenic lineage marker, in muscle tissue sections from control and injured mice. The methodology reported allows for monitoring the autophagic process in one specific cell compartment, the MuSC compartment, which plays a central role in orchestrating muscle regeneration
Current treatment approaches in CML.
Take home messages Five tyrosine kinase inhibitors are available, the treatment strategy is still challenging. Baseline risk, comorbidities, and patient and physician expectations play a pivotal role. Treatment-free remission is a new opportunity
Nilotinib: a novel encouraging therapeutic option for chronic myeloid leukemia patients with imatinib resistance or intolerance
Although high rates of complete hematologic and cytogenetic remission have been observed in patients with chronic phase chronic myeloid leukemia (CML) treated with imatinib, a short duration of response with eventual emergence of imatinib resistance has also been reported in a subset of CML patients. The most frequent clinically relevant mechanisms that change imatinib sensitivity in BCR-ABL-transformed cells are mutations within the Abl kinase domain, affecting several of its properties. Crystal structure analysis of the Abl-imatinib complex has proven helpful in identifying potential critical residues that hinder interactions of imatinib with mutated Abl. This has led to the development of a second generation of targeted therapies such as nilotinib and dasatinib, already in phase II clinical trials or SKI-606 and MK-0457 in phase I trials. In this review, we discuss the activity of nilotinib, developed by Novartis using a rational drug design strategy in which imatinib served as the lead compound. Preliminary studies demonstrated that nilotinib has more efficacy than imatinib in inhibiting proliferation of BCR-ABL-dependent cells, a relatively safety profile and clinical efficacy in all phases of CML
High-Risk Pregnancy Is Associated With Increased Alpha-Fetoprotein Concentrations in the Amniotic Fluid and Foal Plasma
This study aimed to determine alpha-fetoprotein (AFP) concentrations in amniotic fluid, plasma of mares and respective foals: carrying normal pregnancies and delivering healthy foals (n = 20; Group 1); carrying apparently normal pregnancies and delivering sick foals (n = 15; Group 2); carrying high-risk pregnancies and delivering sick foals (n = 14; Group 3). High-risk pregnancy was defined by a history of premature udder development/lactation or increased of the combined thickness of the uterus and placenta, or vulvar discharge and/or mares' systemic illness. Sick foals were affected by neonatal encephalopathy, sepsis, prematurity/dysmaturity, or hypoxic-ischemic encephalopathy. Based on histological examination of the chorioallantois, AFP trend was analyzed in pregnancies with pathologic (PFM) and normal fetal membranes (NFM). Concentrations of AFP were measured using a commercially available immunoassay previously validated for horses. Mares' plasma AFP did not change during the last 15-20 days of pregnancy in the three groups, and there was no difference among them. Amniotic fluid AFP was higher in Group 3 (P = .014). Foals' plasma AFP concentration was higher from birth to 72hours in foals of Group 2 and 3 than in healthy ones, and foals of Group 3 had the highest value. The strong association (r = 0.84; P < .0001) between AFP in amniotic fluid and foals' plasma at birth is likely due to the presence of AFP in fetal urine. AFP was higher in pregnancy with PFM than with NFM in mare's plasma at admission (P = .031), amniotic fluid (P = .004), foal's plasma at birth (P = .002), at 24 (P = .005) and at 72 hours of life (P = .004). AFP is higher in pregnancy with histopathological lesions of the chorioallantois providing the evidence of the differences between pregnancy with a normal placental barrier and the more compromised ones. The increased AFP concentration in the amniotic fluid and plasma of high-risk foals suggests upregulation
A novel method for the simultaneous determination of drugs of abuse, ethyl glucuronide and synthetic opioids in human hair through a single digestion, purification and analysis in LC-MS/MS
Polydrug use is a serious health and social problem worldwide. Over the past several years, there has been an increasing tendency to combine narcotics, alcohol, sedatives, and/or stimulants. To the traditional drugs of abuse and alcohol, an increase of new abuse drugs such as synthetic opioids has been added. In the current study, the development and validation of an innovative and fast analytical procedure has been presented to determine drugs of abuse, ethyl glucuronide and synthetics opioids in 30 mg of human hair through a single digestion, purification and analysis in LC-MS/MS. A combine simple preparation of hair sample followed to a single chromatographic run of 10 min has been proposed. A full validation for 54 target analytes for the parameters of selectivity, linearity, limit of detection, limit of quantification, accuracy, precision, matrix effects, recovery, and dilution integrity was successful completed. The method was linear in different ranges with r values of at least 0.990; the value to the validated LLOQ values were in the range 0.1-100 pg/mg. The method offered satisfactory precisions (CV<15 % and accuracy +/- 20 %). In conclusion, a significant reduction in the overall times of the analytical procedure and the reduction of consumables costs make this method extremely advantageous and undoubtedly useful in routine laboratory workflow analyses and open the way to the prospect of a further implementation which also includes other classes of xenobiotics
COMPARISON of DIVER-OPERATED UNDERWATER PHOTOGRAMMETRIC SYSTEMS for CORAL REEF MONITORING
Underwater photogrammetry is a well-established technique for measuring and modelling the subaquatic environment in fields ranging from archaeology to marine ecology. While for simple tasks the acquisition and processing of images have become straightforward, applications requiring relative accuracy better then 1:1000 are still considered challenging. This study focuses on the metric evaluation of different off-the-shelf camera systems for making high resolution and high accuracy measurements of coral reefs monitoring through time, where the variations to be measured are in the range of a few centimeters per year. High quality and low-cost systems (reflex and mirrorless vs action cameras, i.e. GoPro) with multiple lenses (prime and zoom), different fields of views (from fisheye to moderate wide angle), pressure housing materials and lens ports (dome and flat) are compared. Tests are repeated at different camera to object distances to investigate distance dependent induced errors and assess the accuracy of the photogrammetrically derived models. An extensive statistical analysis of the different systems is performed and comparisons against reference control point measured through a high precision underwater geodetic network are reported
Spatially restricted expression of PlOtp, a Paracentrotus lividus Orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos
Several homeobox genes are expressed in the sea urchin embryo but their roles in development have yet to be elucidated. Of particular interest are homologues of homeobox genes that in mouse and Drosophila are involved in patterning the developing central nervous system (CNS). Here, we report the cloning of an orthpedia (Otp)-related gene from Paracentrotus lividus, PlOtp. Otp is a single copy zygotic gene that presents a unique and highly restricted expression pattern. Transcripts were first detected at the mid-gastrula stage in two pairs of oral ectoderm cells located in a ventrolateral position, overlying primary mesenchyme cell (PMC) clusters. Increases in both transcript abundance and the number of Otp-expressing cells were observed at prism and pluteus stages. Otp transcripts are symmetrically distributed in a few ectodermal cells of the oral field. Labelled cells were observed close to sites of active skeletal rod growth (tips of the budding oral and anal arms), and at the juxtaposition of stomodeum and foregut. Chemicals known to perturb PMC patterning along animal-vegetal and oral-aboral axes altered the pattern of Otp expression. Vegetalization by LiCl caused a shift in Otp-expressing cells toward the animal pole, adjacent to shifted PMC aggregates. Nickel treatment induced expression of the Otp gene in an increased number of ectodermal cells, which adopted a radialized pattern. Finally, ectopic expression of Otp mRNA affected patterning along the oral-aboral axis and caused skeletal abnormalities that resembled those exhibited by nickel-treated embryos. From these results, we conclude that the Otp homeodomain gene is involved in short-range cell signalling within the oral ectoderm for patterning the endoskeleton of the larva through epithelial-mesenchymal interactions
Hair Cortisol and DHEA-S in Foals and Mares as a Retrospective Picture of Feto-Maternal Relationship under Physiological and Pathological Conditions
Equine fetal hair starts to grow at around 270 days of pregnancy, and hair collected at birth reflects hormones of the last third of pregnancy. The study aimed to evaluate cortisol (CORT) and dehydroepiandrosterone-sulfate (DHEA-S) concentrations and their ratio in the trichological matrix of foals and mares in relation to their clinical parameters; the clinical condition of the neonate (study 1); the housing place at parturition (study 2). In study 1, 107 mare-foal pairs were divided into healthy (group H; n = 56) and sick (group S; n = 51) foals, whereas in study 2, group H was divided into hospital (n = 30) and breeding farm (n = 26) parturition. Steroids from hair were measured using a solid-phase microtiter radioimmunoassay. In study 1, hair CORT concentrations measured in foals did not differ between groups and did not appear to be influenced by clinical parameters. A correlation between foal and mare hair CORT concentrations (p = 0.019; r = 0.312, group H; p = 0.006; r = 0.349, group S) and between CORT and DHEA-S concentrations in foals (p = 0.018; r = 0.282, group H; p < 0.001; r = 0.44, group S) and mares (p = 0.006; r = 0.361, group H; p = 0.027; r = 0.271, group S) exists in both groups. Increased hair DHEA-S concentrations (p = 0.033) and decreased CORT/DHEA-S ratio (p < 0.001) appear to be potential biomarkers of chronic stress in the final third of pregnancy, as well as a potential sign of resilience and allostatic load in sick foals, and deserve further attention in the evaluation of prenatal hypothalamus-pituitary-adrenal (HPA) axis activity in the equine species. In study 2, hormone concentrations in the hair of mares hospitalized for attended parturition did not differ from those that were foaled at the breeding farm. This result could be related to a too brief period of hospitalization to cause significant changes in steroid deposition in the mare’s hair
- …