1,733 research outputs found

    Hypothetical and Real Choice Differentially Activate Common Valuation Areas

    Get PDF
    Hypothetical reports of intended behavior are commonly used to draw conclusions about real choices. A fundamental question in decision neuroscience is whether the same type of valuation and choice computations are performed in hypothetical and real decisions. We investigated this question using functional magnetic resonance imaging while human subjects made real and hypothetical choices about purchases of consumer goods. We found that activity in common areas of the orbitofrontal cortex and the ventral striatum correlated with behavioral measures of the stimulus value of the goods in both types of decision. Furthermore, we found that activity in these regions was stronger in response to the stimulus value signals in the real choice condition. The findings suggest that the difference between real and hypothetical choice is primarily attributable to variations in the value computations of the medial orbitofrontal cortex and the ventral striatum, and not attributable to the use of different valuation systems, or to the computation of stronger stimulus value signals in the hypothetical condition

    Origin of perceived support and commitment profiles

    Get PDF
    Origin of perceived support and commitment profiles

    Polarization-dependence of anomalous scattering in brominated DNA and RNA molecules, and importance of crystal orientation in single- and multiple-wavelength anomalous diffraction phasing

    Get PDF
    In this paper the anisotropy of anomalous scattering at the Br K-absorption edge in brominated nucleotides is investigated, and it is shown that this effect can give rise to a marked directional dependence of the anomalous signal strength in X-ray diffraction data. This implies that choosing the correct orientation for crystals of such molecules can be a crucial determinant of success or failure when using single- and multiple-wavelength anomalous diffraction (SAD or MAD) methods to solve their structure. In particular, polarized absorption spectra on an oriented crystal of a brominated DNA molecule were measured, and were used to determine the orientation that yields a maximum anomalous signal in the diffraction data. Out of several SAD data sets, only those collected at or near that optimal orientation allowed interpretable electron density maps to be obtained. The findings of this study have implications for instrumental choices in experimental stations at synchrotron beamlines, as well as for the development of data collection strategy programs

    Etude comparative des scores d'implication des salariés syndiqués et non syndiqués en France

    Get PDF
    Etude comparative des scores d’implication des salariés syndiqués et non syndiqués en France

    Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches

    Full text link
    A semi-classical Monte Carlo model for studying three-dimensional carrier dynamics in photoconductive switches is presented. The model was used to simulate the process of photoexcitation in GaAs-based photoconductive antennas illuminated with pulses typical of mode-locked Ti:Sapphire lasers. We analyzed the power and frequency bandwidth of THz radiation emitted from these devices as a function of bias voltage, pump pulse duration and pump pulse location. We show that the mechanisms limiting the THz power emitted from photoconductive switches fall into two regimes: when illuminated with short duration (<40 fs) laser pulses the energy distribution of the Gaussian pulses constrains the emitted power, while for long (>40 fs) pulses, screening is the primary power-limiting mechanism. A discussion of the dynamics of bias field screening in the gap region is presented. The emitted terahertz power was found to be enhanced when the exciting laser pulse was in close proximity to the anode of the photoconductive emitter, in agreement with experimental results. We show that this enhancement arises from the electric field distribution within the emitter combined with a difference in the mobilities of electrons and holes.Comment: 7 pages, 7 figure

    Spectral fluctuations of Schr\"odinger operators generated by critical points of the potential

    Full text link
    Starting from the spectrum of Schr\"odinger operators on Rn\mathbb{R}^n, we propose a method to detect critical points of the potential. We argue semi-classically on the basis of a mathematically rigorous version of Gutzwiller's trace formula which expresses spectral statistics in term of classical orbits. A critical point of the potential with zero momentum is an equilibrium of the flow and generates certain singularities in the spectrum. Via sharp spectral estimates, this fluctuation indicates the presence of a critical point and allows to reconstruct partially the local shape of the potential. Some generalizations of this approach are also proposed.\medskip keywords : Semi-classical analysis; Schr\"odinger operators; Equilibriums in classical mechanics.Comment: 18 pages, Final versio

    Soutiens perçus, engagements affectifs et succès de carrière subjectif : une approche en termes de profils

    Get PDF
    Perceived support, affective commitments and subjective career success: a person-centred approach (Soutiens perçus, engagements affectifs et succès de carrière subjectif : une approche en termes de profils)

    Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs

    Full text link
    The carrier dynamics of photoexcited electrons in the vicinity of the surface of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy measurements, coupled with Monte Carlo simulations of THz emission, revealed that the surface electric field of GaAs reverses after passivation. The conductivity of photoexcited electrons was determined via optical-pump THz-probe spectroscopy, and was found to double after passivation. These experiments demonstrate that passivation significantly reduces the surface state density and surface recombination velocity of GaAs. Finally, we have demonstrated that passivation leads to an enhancement in the power radiated by photoconductive switch THz emitters, thereby showing the important influence of surface chemistry on the performance of ultrafast THz photonic devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Mitonuclear Interactions Produce Diverging Responses to Mild Stress in Drosophila Larvae

    Get PDF
    Mitochondrial function depends on direct interactions between respiratory proteins encoded by genes in two genomes, mitochondrial and nuclear, which evolve in very different ways. Serious incompatibilities between these genomes can have severe effects on development, fitness and viability. The effect of subtle mitonuclear mismatches has received less attention, especially when subject to mild physiological stress. Here, we investigate how two distinct physiological stresses, metabolic stress (high-protein diet) and redox stress [the glutathione precursor N-acetyl cysteine (NAC)], affect development time, egg-to-adult viability, and the mitochondrial physiology of Drosophila larvae with an isogenic nuclear background set against three mitochondrial DNA (mtDNA) haplotypes: one coevolved (WT) and two slightly mismatched (COX and BAR). Larvae fed the high-protein diet developed faster and had greater viability in all haplotypes. The opposite was true of NAC-fed flies, especially those with the COX haplotype. Unexpectedly, the slightly mismatched BAR larvae developed fastest and were the most viable on both treatments, as well as control diets. These changes in larval development were linked to a shift to complex I-driven mitochondrial respiration in all haplotypes on the high-protein diet. In contrast, NAC increased respiration in COX larvae but drove a shift toward oxidation of proline and succinate. The flux of reactive oxygen species was increased in COX larvae treated with NAC and was associated with an increase in mtDNA copy number. Our results support the notion that subtle mitonuclear mismatches can lead to diverging responses to mild physiological stress, undermining fitness in some cases, but surprisingly improving outcomes in other ostensibly mismatched fly lines
    • …
    corecore