27,252 research outputs found

    Nanostructuring lithium niobate substrates by focused ion beam milling

    Full text link
    We report on two novel ways for patterning Lithium Niobate (LN) at submicronic scale by means of focused ion beam (FIB) bombardment. The first method consists of direct FIB milling on LiNbO3 and the second one is a combination of FIB milling on a deposited metallic layer and subsequent RIE (Reactive Ion Etching) etching. FIB images show in both cases homogeneous structures with well reproduced periodicity. These methods open the way to the fabrication of photonic crystals on LiNbO3 substrates

    A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale

    Get PDF
    Urban green spaces provide cooler microclimates and create localized urban cool islands and, as part of an adaption strategy to cope with future urban climate change, have been proposed as a means to mitigate the urban heat island effect. Numerous previous research papers have discussed green-space size, type, and vegetation density, as well as many other factors that might influence green-space cooling effects. However, little has been done with regard to exploring and quantifying the characteristics of the green-space cool island (UCI). It is also largely unknown whether or how the patterns of green space and land use, as well as the adjacent urban thermal environment, affect UCIs. In this paper, based on the satellite image, the land surface temperature (LST) was retrieved and the UCI was first identified, then the UCI intensity, one of the UCI characteristics, is defined and at last multiple linear regression models used to explore and quantify the combined effects of factors related to UCI intensity. The results show that the intensity differed between UCIs, and that it was correlated significantly with the extent of and mean temperature reduction associated with a UCI. Multiple linear regression analysis shows that UCI intensity was affected by areas of forest vegetation and its spatial arrangements, as well as by the composition of the cool island and its neighboring thermal environment. The study validated the suitability of using intensity as an indicator of the UCI. Identifying the UCI as a result of the green-space cooling effect, will help in the management and planning of the spatial arrangement of green spaces in cities to mitigate the effects of the urban heat environment and help cities adapt to the climate change

    On Measuring Condensate Fraction in Superconductors

    Full text link
    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high temperature superconductors come very close to achieving this goal.Comment: 4 pages, 1 eps figure, RevTex. A new possibility in the underdoped regime is added. Other corrections are mino

    Thermal and electrical transport in the spin density wave antiferromagnet CaFe4_{4}As3_{3}

    Full text link
    We present here measurements of the thermopower, thermal conductivity, and electrical resistivity of the newly reported compound CaFe4As3. Evidence is presented from specific heat and electrical resistivity measurements that a substantial fraction of the Fermi surface survives the onset of spin density wave (SDW) order at the Neel temperature TN=88 K, and its subsequent commensurate lockin transition at T2=26.4 K. The specific heat below T2 consists of a normal metallic component from the ungapped parts of the Fermi surface, and a Bardeen-Cooper- Schrieffer (BCS) component that represents the SDW gapping of the Fermi surface. A large Kadowaki-Woods ratio is found at low temperatures, showing that the ground state of CaFe4As3 is a strongly interacting Fermi liquid. The thermal conductivity of CaFe4As3 is an order of magnitude smaller than those of conventional metals at all temperatures, due to a strong phonon scattering. The thermoelectric power displays a sign change from positive to negative indicating that a partial gap forms at the Fermi level with the onset of commensurate spin density wave order at T2=26.4 K. The small value of the thermopower and the enhancements of the resistivity due to gap formation and strong quasiparticle interactions offset the low value of the thermal conductivity, yielding only a modest value for the thermoelectric figure of merit Z < 5x10^-6 1/K in CaFe4As3. The results of ab initio electronic structure calculations are reported, confirming that the sign change in the thermopower at T2 is reflected by a sign change in the slope of the density of states at the Fermi level. Values for the quasiparticle renormalization are derived from measurements of the specific heat and thermopower, indicating that as T->0, CaFe4As3 is among the most strongly correlated of the known Fe-based pnictide and chalcogenide systems.Comment: 8 pages with 5 figure

    The kaon semileptonic form factor in Nf=2+1 domain wall lattice QCD with physical light quark masses

    Full text link
    We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the phenomenologically convenient point of zero momentum transfer in large physical volumes and for two different values of the lattice spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the first error is statistical and the second error systematic. This result can be combined with experimental measurements of K->pi decays for a determination of the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first error is from experiment and the second error from the lattice computation.Comment: 21 pages, 7 figures, 6 table

    Heavy Quarkonia and Quark Drip Lines in Quark-Gluon Plasma

    Get PDF
    Using the potential model and thermodynamical quantities obtained in lattice gauge calculations, we determine the spontaneous dissociation temperatures of color-singlet quarkonia and the `quark drip lines' which separate the region of bound QQˉQ\bar Q states from the unbound region. The dissociation temperatures of J/ψJ/\psi and χb\chi_b in quenched QCD are found to be 1.62TcT_c and 1.18Tc1.18T_c respectively, in good agreement with spectral function analyses. The dissociation temperature of J/ψJ/\psi in full QCD with 2 flavors is found to be 1.42TcT_c. For possible bound quarkonium states with light quarks, the characteristics of the quark drip lines severely limit the stable region close to the phase transition temperature. Bound color-singlet quarkonia with light quarks may exist very near the phase transition temperature if their effective quark mass is of the order of 300-400 MeV and higher.Comment: 8 pages, 2 figures, in LaTex, invited talk presented at the International Conference on Strangeness in Quark Matter, UCLA, March 26-31, 200

    Singularity Structures in Coulomb-Type Potentials in Two Body Dirac Equations of Constraint Dynamics

    Full text link
    Two Body Dirac Equations (TBDE) of Dirac's relativistic constraint dynamics have been successfully applied to obtain a covariant nonperturbative description of QED and QCD bound states. Coulomb-type potentials in these applications lead naively in other approaches to singular relativistic corrections at short distances that require the introduction of either perturbative treatments or smoothing parameters. We examine the corresponding singular structures in the effective potentials of the relativistic Schroedinger equation obtained from the Pauli reduction of the TBDE. We find that the relativistic Schroedinger equation lead in fact to well-behaved wave function solutions when the full potential and couplings of the system are taken into account. The most unusual case is the coupled triplet system with S=1 and L={(J-1),(J+1)}. Without the inclusion of the tensor coupling, the effective S-state potential would become attractively singular. We show how including the tensor coupling is essential in order that the wave functions be well-behaved at short distances. For example, the S-state wave function becomes simply proportional to the D-state wave function and dips sharply to zero at the origin, unlike the usual S-state wave functions. Furthermore, this behavior is similar in both QED and QCD, independent of the asymptotic freedom behavior of the assumed QCD vector potential. Light- and heavy-quark meson states can be described well by using a simplified linear-plus-Coulomb-type QCD potential apportioned appropriately between world scalar and vector potentials. We use this potential to exhibit explicitly the origin of the large pi-rho splitting and effective chiral symmetry breaking. The TBDE formalism developed here may be used to study quarkonia in quark-gluon plasma environments.Comment: 23 pages, 4 figure

    An analysis of the X-ray emission from the supernova remnant 3C397

    Get PDF
    The ASCA SIS and the ROSAT PSPC spectral data of the SNR 3C397 are analysed with a two-component non-equilibrium ionization model. Besides, the ASCA SIS0 and SIS1 spectra are also fitted simultaneously in an equilibrium case. The resulting values of the hydrogen column density yield a distance of \sim8\kpc to 3C397. It is found that the hard X-ray emission, containing S and Fe Kα\alpha lines, arises primarily from the hot component, while most of the soft emission, composed mainly of Mg, Si, Fe L lines, and continuum, is produced by the cool component. The emission measures suggest that the remnant evolves in a cloudy medium and imply that the supernova progenitor might not be a massive early-type star. The cool component is approaching ionization equilibrium. The ages estimated from the ionization parameters and dynamics are all much greater than the previous determination. We restore the X-ray maps using the ASCA SIS data and compare them with the ROSAT HRI and the NRAO VLA Sky Survey (NVSS) 20 cm maps. The morphology with two bright concentrations suggests a bipolar remnant encountering a denser medium in the west.Comment: 20 pages, aasms4.sty, 3 figures To appear in ApJ (1999
    corecore