458 research outputs found

    Normal Heat Conductivity in a strongly pinned chain of anharmonic oscillators

    Full text link
    We consider a chain of coupled and strongly pinned anharmonic oscillators subject to a non-equilibrium random forcing. Assuming that the stationary state is approximately Gaussian, we first derive a stationary Boltzmann equation. By localizing the involved resonances, we next invert the linearized collision operator and compute the heat conductivity. In particular, we show that the Gaussian approximation yields a finite conductivity κ∼1λ2T2\kappa\sim\frac{1}{\lambda^2T^2}, for λ\lambda the anharmonic coupling strength.Comment: Introduction and conclusion modifie

    Fourier's Law from Closure Equations

    Full text link
    We give a rigorous derivation of Fourier's law from a system of closure equations for a nonequilibrium stationary state of a Hamiltonian system of coupled oscillators subjected to heat baths on the boundary. The local heat flux is proportional to the temperature gradient with a temperature dependent heat conductivity and the stationary temperature exhibits a nonlinear profile

    Using economic and social data to improve veterinary vaccine development: Learning lessons from human vaccinology

    Get PDF
    The drivers of vaccine development are many and varied. They include, for example, recognition of the burden of a vaccine-targeted disease, prioritisation of the multiple problems associated with a disease, consideration of the differing socio-economic situations under which vaccines are used, the influence of advocacy groups, and assessment of the feasibility of large-scale vaccine manufacture and distribution. In the field of human health, data-driven development of vaccines is becoming increasingly common through the availability of reliable information on the Global Burden of Disease (GBD) and stringent evaluations of vaccination programmes utilising empirical data on costing and effectiveness, and standardised cost-effectiveness thresholds. The data generated from such analyses allow policymakers, implementing partners, industries and researchers to make decisions based on the best, and most contextually relevant, available evidence. In this paper, we wish to explore the current use of economic and social data for the development of veterinary vaccines. Through comparison with the development of human vaccines, we will look for opportunities in animal health sciences to better integrate socio-economic data and analyses into the process of veterinary vaccine selection, development, and field implementation. We believe that more robust animal health impact assessments could add value to veterinary vaccine development by improving resource allocation and animal disease management

    A fluidized granular medium as an instance of the Fluctuation Theorem

    Full text link
    We study the statistics of the power flux into a collection of inelastic beads maintained in a fluidized steady-state by external mechanical driving. The power shows large fluctuations, including frequent large negative fluctuations, about its average value. The relative probabilities of positive and negative fluctuations in the power flux are in close accord with the Fluctuation Theorem of Gallavotti and Cohen, even at time scales shorter than those required by the theorem. We also compare an effective temperature that emerges from this analysis to the kinetic granular temperature.Comment: 4 pages, 5 figures, submited to Physical Review Letters; Revised versio

    Signatures of two-dimensionalisation of 3D turbulence in presence of rotation

    Get PDF
    A reason has been given for the inverse energy cascade in the two-dimensionalised rapidly rotating 3D incompressible turbulence. For such system, literature shows a possibility of the exponent of wavenumber in the energy spectrum's relation to lie between -2 and -3. We argue the existence of a more strict range of -2 to -7/3 for the exponent in the case of rapidly rotating turbulence which is in accordance with the recent experiments. Also, a rigorous derivation for the two point third order structure function has been provided helping one to argue that even with slow rotation one gets, though dominated, a spectrum with the exponent -2.87, thereby hinting at the initiation of the two-dimensionalisation effect with rotation.Comment: An extended and typos-corrected version of the earlier submissio

    Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats

    Full text link
    We discuss the Donsker-Varadhan theory of large deviations in the framework of Hamiltonian systems thermostated by a Gaussian stochastic coupling. We derive a general formula for the Donsker-Varadhan large deviation functional for dynamics which satisfy natural properties under time reversal. Next, we discuss the characterization of the stationary state as the solution of a variational principle and its relation to the minimum entropy production principle. Finally, we compute the large deviation functional of the current in the case of a harmonic chain thermostated by a Gaussian stochastic coupling.Comment: Revised version, published in Journal of Statistical Physic

    Thermal conductivity of the Toda lattice with conservative noise

    Full text link
    We study the thermal conductivity of the one dimensional Toda lattice perturbed by a stochastic dynamics preserving energy and momentum. The strength of the stochastic noise is controlled by a parameter γ\gamma. We show that heat transport is anomalous, and that the thermal conductivity diverges with the length nn of the chain according to κ(n)∼nα\kappa(n) \sim n^\alpha, with 0<α≤1/20 < \alpha \leq 1/2. In particular, the ballistic heat conduction of the unperturbed Toda chain is destroyed. Besides, the exponent α\alpha of the divergence depends on γ\gamma
    • …
    corecore