333 research outputs found

    Internalization of the constitutively active arginine 1152-->glutamine insulin receptor occurs independently of insulin at an accelerated rate.

    Get PDF
    Signals controlling the insulin receptor endocytotic pathway have been investigated using the R1152Q insulin receptor mutant (M). This mutant receptor exhibits high levels of insulin-independent kinase activity, impaired autophosphorylation, and lack of an insulin stimulatory effect on both auto- and substrate phosphorylation. NIH-3T3 fibroblasts expressing M receptors displayed a 2.5-fold higher 125I-insulin internalization rate than wild type (WT) but lacked insulin-induced receptor internalization and down-regulation. Cell surface recycling of internalized receptors also occurred at a higher rate in M cells and was unaffected by insulin. Cell preincubation with 35 mM Tris, which inhibits the insulin receptor degradative route, elicited no effect on M receptor recycling but inhibited that of WT by 40%. In contrast, the energy depleter 2,4-dinitrophenol, which inhibits normal insulin receptor retroendocytosis, impaired M receptor recycling 4-fold more effectively than that of WT. The release of internalized intact 125I-insulin was 6-fold greater in M than in WT fibroblasts and was almost completely inhibited by dinitrophenol, whereas insulin degradation by M cells was 4-fold decreased as compared with WT. Thus, internalization and recycling of the constitutively active Gln1152 receptor kinase occur in the absence of autophosphorylation. However, tyrosine phosphorylation appears to be required for proper sorting of endocytosed insulin receptors

    Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells

    Get PDF
    AIMS/HYPOTHESIS: Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells. METHODS: Real-time RT-PCR analysis, 2-deoxy-D: -glucose (2-DG) uptake and western blot analysis were carried out in rat and human muscle cell lines. RESULTS: In both rat and human myotubes, glucosamine treatment caused a significant increase in the expression of the ER stress markers immunoglobulin heavy chain-binding protein/glucose-regulated protein 78 kDa (BIP/GRP78 [also known as HSPA5]), X-box binding protein-1 (XBP1) and activating transcription factor 6 (ATF6). In addition, glucosamine impaired insulin-stimulated 2-DG uptake in both rat and human myotubes. Interestingly, pretreatment of both rat and human myotubes with the chemical chaperones 4-phenylbutyric acid (PBA) or tauroursodeoxycholic acid (TUDCA), completely prevented the effect of glucosamine on both ER stress induction and insulin-induced glucose uptake. In both rat and human myotubes, glucosamine treatment reduced mRNA and protein levels of the gene encoding GLUT4 and mRNA levels of the main regulators of the gene encoding GLUT4 (myocyte enhancer factor 2 a [MEF2A] and peroxisome proliferator-activated receptor-gamma coactivator 1alpha [PGC1alpha]). Again, PBA or TUDCA pretreatment prevented glucosamine-induced inhibition of GLUT4 (also known as SLC2A4), MEF2A and PGC1alpha (also known as PPARGC1A). Finally, we showed that overproduction of ATF6 is sufficient to inhibit the expression of genes GLUT4, MEF2A and PGC1alpha and that ATF6 silencing with a specific small interfering RNA is sufficient to completely prevent glucosamine-induced inhibition of GLUT4, MEF2A and PGC1alpha in skeletal muscle cells. CONCLUSIONS/INTERPRETATION: In this work we show that glucosamine-induced ER stress causes insulin resistance in both human and rat myotubes and impairs GLUT4 production and insulin-induced glucose uptake via an ATF6-dependent decrease of the GLUT4 regulators MEF2A and PGC1alpha

    GRP78 Mediates Cell Growth and Invasiveness in Endometrial Cancer.

    Get PDF
    Abstract Recent studies have indicated that endoplasmic reticulum stress, the unfolded protein response activation and altered GRP78 expression can play an important role in a variety of tumors development and progression. Very recently we reported for the first time that GRP78 is increased in endometrial tumors. However, whether GRP78 could play a role in the growth and/or invasiveness of endometrial cancer cells is still unknown. Here we report that the silencing of GRP78 expression affects both cell growth and invasiveness of Ishikawa and AN3CA cells, analyzed by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and transwell migration assay, respectively. At variance with Ishikawa cells, AN3CA cells showed, besides an endoplasmic reticulum, also a plasma membrane GRP78 localization, evidenced by both immunofluorescence and cell membrane biotinylation experiments. Intriguingly, flow cytometry experiments showed that the treatment with a specific antibody targeting GRP78 C-terminal domain caused apoptosis in AN3CA but not in Ishikawa cells. Induction of apoptosis in AN3CA cells was not mediated by the p53 pathway activation but was rather associated to reduced AKT phosphorylation. Interestingly, immunofluorescence analysis evidenced that endometrioid adenocarcinoma tissues displayed, similarly to AN3CA cells, also a GRP78 plasma membrane localization. These data suggest that GRP78 and its plasma membrane localization, might play a role in endometrial cancer development and progression and might constitute a novel target for the treatment of endometrial cancer

    Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15.

    Get PDF
    Over-expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) causes insulin resistance by interacting with the D4 domain of phospholipase D1 (PLD1). Indeed, the disruption of this association restores insulin sensitivity in cultured cells over-expressing PED/PEA-15. Whether the displacement of PLD1 from PED/PEA-15 improves insulin sensitivity in vivo has not been explored yet. In this work we show that treatment with a recombinant adenoviral vector containing the human D4 cDNA (Ad-D4) restores normal glucose homeostasis in transgenic mice overexpressing PED/PEA-15 (Tg ped/pea-15) by improving both insulin sensitivity and secretion. In skeletal muscle of these mice, D4 over-expression inhibited PED/PEA-15-PLD1 interaction, decreased Protein Kinase C alpha activation and restored insulin induced Protein Kinase C zeta activation, leading to amelioration of insulin-dependent glucose uptake. Interestingly, Ad-D4 administration improved insulin sensitivity also in high-fat diet treated obese C57Bl/6 mice. We conclude that PED/PEA-15-PLD1 interaction may represent a novel target for interventions aiming at improving glucose tolerance

    Platelet-rich plasma counteracts detrimental effect of high-glucose concentrations on mesenchymal stem cells from Bichat fat pad

    Get PDF
    Diabetic patients display increased risk of periodontitis and failure in bone augmentation procedures. Mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) represent a relevant advantage in tissue repair process and regenerative medicine. We isolated MSCs from Bichat's buccal fat pad (BFP) and measured the effects of glucose and PRP on cell number and osteogenic differentiation potential. Cells were cultured in the presence of 5.5-mM glucose (low glucose [LG]) or 25-mM glucose (high glucose [HG]). BFP–MSC number was significantly lower when cells were cultured in HG compared with those in LG. Following osteogenic differentiation procedures, calcium accumulation, alkaline phosphatase activity, and expression of osteogenic markers were significantly lower in HG compared with LG. Exposure of BFP–MSC to PRP significantly increased cell number and osteogenic differentiation potential, reaching comparable levels in LG and in HG. Thus, high-glucose concentrations impair BFP–MSC growth and osteogenic differentiation. However, these detrimental effects are largely counteracted by PRP

    The Pervasive Effects of ER Stress on a Typical Endocrine Cell: Dedifferentiation, Mesenchymal Shift and Antioxidant Response in the Thyrocyte

    Get PDF
    none13noThe endoplasmic reticulum stress and the unfolded protein response are triggered following an imbalance between protein load and protein folding. Until recently, two possible outcomes of the unfolded protein response have been considered: life or death. We sought to substantiate a third alternative, dedifferentiation, mesenchymal shift, and activation of the antioxidant response by using typical endocrine cells, i.e. thyroid cells. The thyroid is a unique system both of endoplasmic reticulum stress (a single protein, thyroglobulin represents the majority of proteins synthesized in the endoplasmic reticulum by the thyrocyte) and of polarized epithelium (the single layer of thyrocytes delimiting the follicle). Following endoplasmic reticulum stress, in thyroid cells the folding of thyroglobulin was disrupted. The mRNAs of unfolded protein response were induced or spliced (X-box binding protein-1). Differentiation was inhibited: mRNA levels of thyroid specific genes, and of thyroid transcription factors were dramatically downregulated, at least in part, transcriptionally. The dedifferentiating response was accompanied by an upregulation of mRNAs of antioxidant genes. Moreover, cadherin-1, and the thyroid (and kidney)-specific cadherin-16 mRNAs were downregulated, vimentin, and SNAI1 mRNAs were upregulated. In addition, loss of cortical actin and stress fibers formation were observed. Together, these data indicate that ER stress in thyroid cells induces dedifferentiation, loss of epithelial organization, shift towards a mesenchymal phenotype, and activation of the antioxidant response, highlighting, at the same time, a new and wide strategy to achieve survival following ER stress, and, as a sort of the other side of the coin, a possible new molecular mechanism of decline/loss of function leading to a deficit of thyroid hormones formation.openUlianich L.; Mirra P.; Garbi C.; Cali G.; Conza D.; Treglia A.S.; Miraglia A.; Punzi D.; Miele C.; Raciti G.A.; Beguinot F.; Consiglio E.; Di Jeso B.Ulianich, L.; Mirra, P.; Garbi, C.; Cali, G.; Conza, D.; Treglia, A. S.; Miraglia, A.; Punzi, D.; Miele, C.; Raciti, G. A.; Beguinot, F.; Consiglio, E.; Di Jeso, B

    Surgical stress and metabolic response after totally laparoscopic right colectomy

    Get PDF
    No clear consensus on the need to perform an intracorporeal anastomosis (IA) after laparoscopic right colectomy is currently available. One of the potential benefits of intracorporeal anastomosis may be a reduction in surgical stress. Herein, we evaluated the surgical stress response and the metabolic response in patients who underwent right colonic resection for colon cancer. Fifty-nine patients who underwent laparoscopic resection for right colon cancer were randomized to receive an intracorporeal or an extracorporeal anastomosis (EA). Data including demographics (age, sex, BMI and ASA score), pathological (AJCC tumour stage and tumour localization) and surgical results were recorded. Moreover, to determine the levels of the inflammatory response, mediators, such as C-reactive protein (CRP), tumour necrosis factor (TNF), interleukin 1β (IL-1β), IL-6, IL-10, and IL-13, were evaluated. Similarly, cortisol and insulin levels were evaluated as hormonal responses to surgical stress. We found that the proinflammatory mediator IL-6, CRP, TNF and IL-1β levels, were significantly reduced in IA compared to EA. Concurrently, an improved profile of the anti-inflammatory cytokines IL-10 and IL-13 was observed in the IA group. Relative to the hormone response to surgical stress, cortisol was increased in patients who underwent EA, while insulin was reduced in the EA group. Based on these results, surgical stress and metabolic response to IA justify advocating the adoption of a totally laparoscopic approach when performing a right colectomy for cancer. This trial is registered on ClinicalTrials.gov (ID: NCT03422588)

    PED/PEA-15 Controls Fibroblast Motility and Wound Closure by ERK1/2-Dependent Mechanisms

    Get PDF
    Cell migration is dependent on the control of signaling events that play significant roles in creating contractile force and in contributing to wound closure. We evaluated wound closure in fibroblasts from mice overexpressing (TgPED) or lacking ped/pea-15 (KO), a gene overexpressed in patients with type 2 diabetes. Cultured skin fibroblasts isolated from TgPED mice showed a significant reduction in the ability to recolonize wounded area during scratch assay, compared to control fibroblasts. This difference was observed both in the absence and in the presence of mytomicin C, an inhibitor of mitosis. In time-lapse experiments, TgPED fibroblasts displayed about twofold lower velocity and diffusion coefficient, as compared to controls. These changes were accompanied by reduced spreading and decreased formation of stress fibers and focal adhesion plaques. At the molecular level, TgPED fibroblasts displayed decreased RhoA activation and increased abundance of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2). Inhibition of ERK1/2 activity by PD98059 restored RhoA activation, cytoskeleton organization and cell motility, and almost completely rescued wound closure of TgPED fibroblasts. Interestingly, skin fibroblasts isolated from KO mice displayed an increased wound closure ability. In vivo, healing of dorsal wounds was delayed in TgPED and accelerated in KO mice. Thus, PED/PEA-15 may affect fibroblast motility by a mechanism, at least in part, mediated by ERK1/2. J. Cell. Physiol. 227: 2106–2116, 2012. © 2011 Wiley Periodicals, Inc
    • …
    corecore