15 research outputs found

    Severe Neurological Abnormalities in a Young Boy with Impaired Thyroid Hormone Sensitivity Due to a Novel Mutation in the MCT8 Gene

    Get PDF
    Monocarboxylate transporter 8 (MCT8) is an active and specific thyroid hormone transporter into neurons. MCT8 mutations cause an X-linked condition known as Allan-Herndon-Dudley syndrome and are characterized by impaired psychomotor development and typical abnormal thyroid function. We describe a 10-year-old boy with severe cognitive disability, axial hypotonia, spastic quadriplegia and sporadic dyskinetic episodes. He initially presented with thyroid dysfunction (high FT3, low rT3, low FT4 and normal TSH) and generalized retardation of the cerebral and cerebellar myelination in brain magnetic resonance imaging. The clinical and laboratory findings led to sequencing of the SLC16A2/MCT8 gene, which identified a novel missense mutation in exon 5. The study of peripheral markers of thyroid function suggests a paradoxical state of thyrotoxicosis in some peripheral tissues. Our patient had a typical clinical presentation at birth but because of the rarity of his disease his diagnosis was not made until the age of 7. The delay can also be explained by the omission of the free T3 assay in the first thyroid evaluation performed. This case therefore highlights the possible benefit of including the T3 assay in the study of patients with severe psychomotor disability of unknown etiology, thus eliminating extra costs for unnecessary complementary diagnostic tests.info:eu-repo/semantics/publishedVersio

    An update in the structure, function, and regulation of V-ATPases: the role of the C subunit

    No full text
    Vacuolar ATPases (V-ATPases) are present in specialized proton secretory cells in which they pump protons across the membranes of various intracellular organelles and across the plasma membrane. The proton transport mechanism is electrogenic and establishes an acidic pH and a positive transmembrane potential in these intracellular and extracellular compartments. V-ATPases have been found to be practically identical in terms of the composition of their subunits in all eukaryotic cells. They have two distinct structures: a peripheral catalytic sector (V1) and a hydrophobic membrane sector (V0) responsible for driving protons. V-ATPase activity is regulated by three different mechanisms, which control pump density, association/dissociation of the V1 and V0 domains, and secretory activity. The C subunit is a 40-kDa protein located in the V1 domain of V-ATPase. The protein is encoded by the ATP6V1C gene and is located at position 22 of the long arm of chromosome 8 (8q22.3). The C subunit has very important functions in terms of controlling the regulation of the reversible dissociation of V-ATPases

    Molecular and clinical characterization of a novel nonsense variant in exon 1 of the upf3b gene found in a large spanish basque family (Mrx82)

    No full text
    X-linked intellectual disability (XLID) is known to explain up to 10% of the intellectual disability in males. A large number of families in which intellectual disability is the only clinically consistent manifestation have been described. While linkage analysis and candidate gene testing were the initial approaches to find genes and variants, next generation sequencing (NGS) has accelerated the discovery of more and more XLID genes. Using NGS, we resolved the genetic cause of MRX82 (OMIM number 300518), a large Spanish Basque family with five affected males with intellectual disability and a wide phenotypic variability among them despite having the same pathogenic variant. Although the previous linkage study had mapped the locus to an interval of 7.6Mb in Xq24-Xq25 of the X chromosome, this region contained too many candidate genes to be analysed using conventional approaches. NGS revealed a novel nonsense variant: c.118C > T; p.Gln40* in UPF3B, a gene previously implicated in XLID that encodes a protein involved in nonsense-mediated mRNA decay (NMD). Further molecular studies showed that the mRNA transcript was not completely degraded by NMD. However, UPF3B protein was not detected by conventional Western Blot analysis at least downstream of the 40 residue demonstrating that the phenotype could be due to the loss of functional protein. This is the first report of a premature termination codon before the three functional domains of the UPF3B protein and these results directly implicate the absence of these domains with XLID, autism and some dysmorphic features
    corecore