1,907 research outputs found
The H.E.S.S. multi-messenger program
Based on fundamental particle physics processes like the production and
subsequent decay of pions in interactions of high-energy particles, close
connections exist between the acceleration sites of high-energy cosmic rays and
the emission of high-energy gamma rays and high-energy neutrinos. In most cases
these connections provide both spatial and temporal correlations of the
different emitted particles. The combination of the complementary information
provided by these messengers allows to lift ambiguities in the interpretation
of the data and enables novel and highly sensitive analyses. In this
contribution the H.E.S.S. multi-messenger program is introduced and described.
The current core of this newly installed program is the combination of
high-energy neutrinos and high-energy gamma rays. The search for gamma-ray
emission following gravitational wave triggers is also discussed. Furthermore,
the existing program for following triggers in the electromagnetic regime was
extended by the search for gamma-ray emission from Fast Radio Bursts (FRBs). An
overview over current and planned analyses is given and recent results are
presented.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherland
Percutaneous pulmonary valve implantation alters electrophysiologic substrate
BACKGROUND: Percutaneous pulmonary valve implantation (PPVI) is first‐line therapy for some congenital heart disease patients with right ventricular outflow tract dysfunction. The hemodynamics improvements after PPVI are well documented, but little is known about its effects on the electrophysiologic substrate. The objective of this study is to assess the short‐ and medium‐term electrophysiologic substrate changes and elucidate postprocedure arrhythmias. METHODS AND RESULTS: A retrospective chart review of patients undergoing PPVI from May 2010 to April 2015 was performed. A total of 106 patients underwent PPVI; most commonly these patients had tetralogy of Fallot (n=59, 55%) and pulmonary insufficiency (n=60, 57%). The median follow‐up time was 28 months (7‐63 months). Pre‐PPVI, 25 patients (24%) had documented arrhythmias: nonsustained ventricular tachycardia (NSVT) (n=9, 8%), frequent premature ventricular contractions (PVCs) (n=6, 6%), and atrial fibrillation/flutter (AF/AFL) (n=10, 9%). Post‐PPVI, arrhythmias resolved in 4 patients who had NSVT (44%) and 5 patients who had PVCs (83%). New arrhythmias were seen in 16 patients (15%): 7 NSVT, 8 PVCs, and 1 AF/AFL. There was resolution at medium‐term follow‐up in 6 (86%) patients with new‐onset NSVT and 7 (88%) patients with new‐onset PVCs. There was no difference in QRS duration pre‐PPVI, post‐PPVI, and at medium‐term follow‐up (P=0.6). The median corrected QT lengthened immediately post‐PPVI but shortened significantly at midterm follow‐up (P<0.01). CONCLUSIONS: PPVI reduced the prevalence of NSVT. The majority of postimplant arrhythmias resolve by 6 months of follow‐up
Mott transition in one dimension: Benchmarking dynamical cluster approaches
The variational cluster approach (VCA) is applied to the one-dimensional
Hubbard model at zero temperature using clusters (chains) of up to ten sites
with full diagonalization and the Lanczos method as cluster solver. Within the
framework of the self-energy-functional theory (SFT), different cluster
reference systems with and without bath degrees of freedom, in different
topologies and with different sets of variational parameters are considered.
Static and one-particle dynamical quantities are calculated for half-filling as
a function of U as well as for fixed U as a function of the chemical potential
to study the interaction- and filling-dependent metal-insulator (Mott)
transition. The recently developed Q-matrix technique is used to compute the
SFT grand potential. For benchmarking purposes we compare the VCA results with
exact results available from the Bethe ansatz, with essentially exact dynamical
DMRG data, with (cellular) dynamical mean-field theory and full diagonalization
of isolated Hubbard chains. Several issues are discussed including convergence
of the results with cluster size, the ability of cluster approaches to access
the critical regime of the Mott transition, efficiency in the optimization of
correlated-site vs. bath-site parameters and of multi-dimensional parameter
optimization. We also study the role of bath sites for the description of
excitation properties and as charge reservoirs for the description of filling
dependencies. The VCA turns out to be a computationally cheap method which is
competitive with established cluster approaches.Comment: 19 pages, 19 figures, v3 with minor corrections, extended discussio
Nonthermal Melting of Néel Order in the Hubbard Model
Symmetry-broken states such as magnetic order and superconductivity are the hallmark of complex properties in solids. An intriguing new direction in condensed-matter physics is to manipulate these properties on the fastest possible time scales using ultrashort laser pulses. Theoretically, however, the collective many-particle dynamics that is responsible for the formation and melting of long-range order is associated with many open questions.Here, we combine two state-of-the-art numerical techniques—time-dependent density matrix renormalization group and nonequilibrium dynamical mean-field theory—to create a model system that represents interacting electrons on a bipartite lattice in which electrons can tunnel between sites. We prepare this model such that particles on neighboring sites initially align their magnetic moments in an antiparallel manner (i.e., representing antiferromagnetic order). The particles can then move between lattice sites, which leads to the melting of the magnetic order. We theoretically show that the precise movement mechanism depends strongly on the interaction between the particles: For strong interactions, the system behaves like a collection of localized magnetic moments. For weak interactions, on the other hand, the dynamics reflects the existence of coherent quasiparticles, which are typically restricted to excitations close to the ground state. In our case, these quasiparticles prevail on short times even though the system is strongly excited.Our setup, which is well suited for experiments using cold atoms, has the ability to reveal the crossover between localized and itinerant behavior. In the future, similar studies of systems with several active orbitals may make it possible to better understand how complex solids can relax into entirely new—and possibly thermodynamically hidden—phases
Multiparty Classical Choreographies
We present Multiparty Classical Choreographies (MCC), a language model where
global descriptions of communicating systems (choreographies) implement typed
multiparty sessions. Typing is achieved by generalising classical linear logic
to judgements that explicitly record parallelism by means of hypersequents. Our
approach unifies different lines of work on choreographies and processes with
multiparty sessions, as well as their connection to linear logic. Thus, results
developed in one context are carried over to the others. Key novelties of MCC
include support for server invocation in choreographies, as well as
logic-driven compilation of choreographies with replicated processes.Comment: Post-proceedings paper presented at the 28th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2018), Frankfurt
am Main, Germany, 4-6 September 2018 (arXiv:1808.03326) The paper was
improved and extended (+2 pages). Now more details are provided on the wor
The H.E.S.S. II GRB Program
Gamma-ray bursts (GRBs) are some of the most energetic and exotic events in
the Universe, however their behaviour at the highest energies (>10 GeV) is
largely unknown. Although the Fermi-LAT space telescope has detected several
GRBs in this energy range, it is limited by the relatively small collection
area of the instrument. The H.E.S.S. experiment has now entered its second
phase by adding a fifth telescope of 600 m mirror area to the centre of
the array. This new telescope increases the energy range of the array, allowing
it to probe the sub-100 GeV range while maintaining the large collection area
of ground based gamma-ray observatories, essential to probing short-term
variability at these energies. We will present a description of the GRB
observation scheme used by the H.E.S.S. experiment, summarising the behaviour
and performance of the rapid GRB repointing system, the conditions under which
potential GRB repointings are made and the data analysis scheme used for these
observations.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherland
Optimization of an Alkylpolyglucoside-Based Dishwashing Detergent Formulation.
The aim of this work was to formulate and optimize the washing performance of an alkylpolyglucoside-based dishwashing detergent. The liquid detergent was formulated with five ingredients of commercial origin: anionic (linear sodium alkylbenzenesulfonate and sodium laurylethersulfate), nonionic (C12–C14 alkylpolyglucoside) and zwitterionic (a fatty acid amide derivative with a betaine structure) surfactants, and NaCl for viscosity control. In addition to the plate test, other properties were investigated including ‘‘cloud point’’, viscosity, and emulsion stability. Statistical analysis software was used to generate a central composite experimental design. Then, a second order design and analysis of experiments approach, known as the Response Surface Methodology, was set up to investigate the effects of the five components of the formulation on the studied properties in the region covering plausible component ranges. The method proved to be efficient for locating the domains of concentrations where the desired properties were met
First order Mott transition at zero temperature in two dimensions: Variational plaquette study
The nature of the metal-insulator Mott transition at zero temperature has
been discussed for a number of years. Whether it occurs through a quantum
critical point or through a first order transition is expected to profoundly
influence the nature of the finite temperature phase diagram. In this paper, we
study the zero temperature Mott transition in the two-dimensional Hubbard model
on the square lattice with the variational cluster approximation. This takes
into account the influence of antiferromagnetic short-range correlations. By
contrast to single-site dynamical mean-field theory, the transition turns out
to be first order even at zero temperature.Comment: 6 pages, 5 figures, version 2 with additional results for 8 bath
site
Comparing theories: the dynamics of changing vocabulary. A case-study in relativity theory
There are several first-order logic (FOL) axiomatizations of special
relativity theory in the literature, all looking essentially different but
claiming to axiomatize the same physical theory. In this paper, we elaborate a
comparison, in the framework of mathematical logic, between these FOL theories
for special relativity. For this comparison, we use a version of mathematical
definability theory in which new entities can also be defined besides new
relations over already available entities. In particular, we build an
interpretation of the reference-frame oriented theory SpecRel into the
observationally oriented Signalling theory of James Ax. This interpretation
provides SpecRel with an operational/experimental semantics. Then we make
precise, "quantitative" comparisons between these two theories via using the
notion of definitional equivalence. This is an application of logic to the
philosophy of science and physics in the spirit of Johan van Benthem's work.Comment: 27 pages, 8 figures. To appear in Springer Book series Trends in
Logi
- …
