364 research outputs found
Decomposition driven interface evolution for layers of binary mixtures: {II}. Influence of convective transport on linear stability
We study the linear stability with respect to lateral perturbations of free
surface films of polymer mixtures on solid substrates. The study focuses on the
stability properties of the stratified and homogeneous steady film states
studied in Part I [U. Thiele, S. Madruga and L. Frastia, Phys. Fluids 19,
122106 (2007)]. To this aim, the linearized bulk equations and boundary
equations are solved using continuation techniques for several different cases
of energetic bias at the surfaces, corresponding to linear and quadratic
solutal Marangoni effects.
For purely diffusive transport, an increase in film thickness either
exponentially decreases the lateral instability or entirely stabilizes the
film. Including convective transport leads to a further destabilization as
compared to the purely diffusive case. In some cases the inclusion of
convective transport and the related widening of the range of available film
configurations (it is then able to change its surface profile) change the
stability behavior qualitatively.
We furthermore present results regarding the dependence of the instability on
several other parameters, namely, the Reynolds number, the Surface tension
number and the ratio of the typical velocities of convective and diffusive
transport.Comment: Published in Physics of Fluic
Polymer drift in a solvent by force acting on one polymer end
We investigate the effect of hydrodynamic interactions on the non-equilibrium
drift dynamics of an ideal flexible polymer pulled by a constant force applied
at one end of the polymer using the perturbation theory and the renormalization
group method. For moderate force, if the polymer elongation is small, the
hydrodynamic interactions are not screened and the velocity and the
longitudinal elongation of the polymer are computed using the renormalization
group method. Both the velocity and elongation are nonlinear functions of the
driving force in this regime. For large elongation we found two regimes. For
large force but finite chain length the hydrodynamic interactions are
screened. For large chain lengths and a finite force the hydrodynamic
interactions are only partially screened, which in three dimensions results in
unusual logarithmic corrections to the velocity and the longitudinal
elongation.Comment: 6 page
Dynamics of Strongly Deformed Polymers in Solution
Bead spring models for polymers in solution are nonlinear if either the
finite extensibility of the polymer, excluded volume effects or hydrodynamic
interactions between polymer segments are taken into account. For such models
we use a powerful method for the determination of the complete relaxation
spectrum of fluctuations at {\it steady state}. In general, the spectrum and
modes differ significantly from those of the linear Rouse model. For a tethered
polymer in uniform flow the differences are mainly caused by an inhomogeneous
distribution of tension along the chain and are most pronounced due to the
finite chain extensibility. Beyond the dynamics of steady state fluctuations we
also investigate the nonlinear response of the polymer to a {\em large sudden
change} in the flow. This response exhibits several distinct regimes with
characteristic decay laws and shows features which are beyond the scope of
single mode theories such as the dumbbell model.Comment: 7 pages, 3 figure
Straightening of Thermal Fluctuations in Semi-Flexible Polymers by Applied Tension
We investigate the propagation of a suddenly applied tension along a
thermally excited semi-flexible polymer using analytical approximations,
scaling arguments and numerical simulation. This problem is inherently
non-linear. We find sub-diffusive propagation with a dynamical exponent of 1/4.
By generalizing the internal elasticity, we show that tense strings exhibit
qualitatively different tension profiles and propagation with an exponent of
1/2.Comment: Latex file; with three postscript figures; .ps available at
http://dept.physics.upenn.edu/~nelson/pull.p
Dynamical Model for Chemically Driven Running Droplets
We propose coupled evolution equations for the thickness of a liquid film and
the density of an adsorbate layer on a partially wetting solid substrate.
Therein, running droplets are studied assuming a chemical reaction underneath
the droplets that induces a wettability gradient on the substrate and provides
the driving force for droplet motion. Two different regimes for moving droplets
-- reaction-limited and saturated regime -- are described. They correspond to
increasing and decreasing velocities with increasing reaction rates and droplet
sizes, respectively. The existence of the two regimes offers a natural
explanation of prior experimental observations.Comment: 4 pages, 5 figure
Interfacial layering in a three-component polymer system
We study theoretically the temporal evolution and the spatial structure of
the interface between two polymer melts involving three different species (A,
A* and B). The first melt is composed of two different polymer species A and A*
which are fairly indifferent to one another (Flory parameter chi_AA* ~ 0). The
second melt is made of a pure polymer B which is strongly attracted to species
A (chi_AB 0). We then show
that, due to these contradictory tendencies, interesting properties arise
during the evolution of the interface after the melts are put into contact: as
diffusion proceeds, the interface structures into several adjacent
"compartments", or layers, of differing chemical compositions, and in addition,
the central mixing layer grows in a very asymmetric fashion. Such unusual
behaviour might lead to interesting mechanical properties, and demonstrates on
a specific case the potential richness of multi-component polymer interfaces
(as compared to conventional two-component interfaces) for various
applications.Comment: Revised version, to appear in Macromolecule
Contact line motion for partially wetting fluids
We study the flow close to an advancing contact line in the limit of small
capillary number. To take into account wetting effects, both long and
short-ranged contributions to the disjoining pressure are taken into account.
In front of the contact line, there is a microscopic film corresponding to a
minimum of the interaction potential. We compute the parameters of the contact
line solution relevant to the matching to a macroscopic problem, for example a
spreading droplet. The result closely resembles previous results obtained with
a slip model
Monomer dynamics of a wormlike chain
We derive the stochastic equations of motion for a tracer that is tightly
attached to a semiflexible polymer and confined or agitated by an externally
controlled potential. The generalised Langevin equation, the power spectrum,
and the mean-square displacement for the tracer dynamics are explicitly
constructed from the microscopic equations of motion for a weakly bending
wormlike chain by a systematic coarse-graining procedure. Our accurate
analytical expressions should provide a convenient starting point for further
theoretical developments and for the analysis of various single-molecule
experiments and of protein shape fluctuations.Comment: 6 pages, 4 figure
Non-monotonous crossover between capillary condensation and interface localisation/delocalisation transition in binary polymer blends
Within self-consistent field theory we study the phase behaviour of a
symmetric binary AB polymer blend confined into a thin film. The film surfaces
interact with the monomers via short range potentials. One surface attracts the
A component and the corresponding semi-infinite system exhibits a first order
wetting transition. The surface interaction of the opposite surface is varied
as to study the crossover from capillary condensation for symmetric surface
fields to the interface localisation/delocalisation transition for
antisymmetric surface fields. In the former case the phase diagram has a single
critical point close to the bulk critical point. In the latter case the phase
diagram exhibits two critical points which correspond to the prewetting
critical points of the semi-infinite system. The crossover between these
qualitatively different limiting behaviours occurs gradually, however, the
critical temperature and the critical composition exhibit a non-monotonic
dependence on the surface field.Comment: to appear in Europhys.Let
Generic morphologies of viscoelastic dewetting fronts
A simple model is put forward which accounts for the occurrence of certain
generic dewetting morphologies in thin liquid coatings. It demonstrates that by
taking into account the elastic properties of the coating, a morphological
phase diagram may be derived which describes the observed structures of
dewetting fronts. It is demonstrated that dewetting morphologies may also serve
to determine nanoscale rheological properties of liquids.Comment: 4 pages, 2 figure
- …