161,262 research outputs found
Advanced Space Shuttle simulation model
The effects of atmospheric turbulence in horizontal and near-horizontal flight during the return of the Space Shuttle are important for determining design, control, and pilot-in-the-loop effects. A nonrecursive model (based on vonKarman spectra) for atmospheric turbulence along the flight path of the Shuttle Orbiter has been developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity and also for simulation of instantaneous gust gradients. Based on this model the time series for gusts and gust gradients have been generated and stored on a series of magnetic tapes which are entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided, the results of validating the simulated turbulence are described, and conclusions and recommendations are presented. Appendices provide tabulated one-dimensional vonKarman spectra, a discussion of the minimum frequency simulated, and the results of spectral and statistical analyses of the SSTT
Uncertainty in Soft Temporal Constraint Problems:A General Framework and Controllability Algorithms forThe Fuzzy Case
In real-life temporal scenarios, uncertainty and preferences are often
essential and coexisting aspects. We present a formalism where quantitative
temporal constraints with both preferences and uncertainty can be defined. We
show how three classical notions of controllability (that is, strong, weak, and
dynamic), which have been developed for uncertain temporal problems, can be
generalized to handle preferences as well. After defining this general
framework, we focus on problems where preferences follow the fuzzy approach,
and with properties that assure tractability. For such problems, we propose
algorithms to check the presence of the controllability properties. In
particular, we show that in such a setting dealing simultaneously with
preferences and uncertainty does not increase the complexity of controllability
testing. We also develop a dynamic execution algorithm, of polynomial
complexity, that produces temporal plans under uncertainty that are optimal
with respect to fuzzy preferences
Galactic oscillations
Several oscillations have been identified in spherical galaxy models. These are normal mode oscillations in a stable galaxy. Each has its own distinct period and spatial form, and each rings without detectable damping through a Hubble time. The most important are: (1) a simple radial pulsation (fundamental mode), in which all parts of the galaxy move inward or outward with the same phase; and (2) a second spherically symmetrical radial mode with one node, so material inside the node moves outward when material outside moves inward. Numerical experiments suggest that normal mode oscillations may be present in nearly all galaxies at a considerably higher amplitude than has previously been thought. Amplitudes typically run a few percent of equilibrium values, and periods are around 50-300 Myrs in typical galaxies. These time scales are long enough that gas trapped near the center could cool during an oscillation cycle, allowing star formation activity. The second mode oscillations could cause bursts of star formation
Dynamic response and stability of a composite prop-fan model
Results are presented for blade response and stability during wind tunnel tests of a 62.2 cm diameter model of a prop-fan, advanced turboprop, with swept graphite/epoxy composite blades. Measurements of dynamic response were made with the rotor mounted on an isolated nacelle, with varying tilt for nonuniform inflow, at flow speeds from 0.36 to 0.9 Mach number. The blade displayed no instabilities over the operating range tested, up to 0.9 Mach number and 10,000 RPM. Measurements are compared with those for other prop-fan models of both solid metal and graphite composite construction. The swept composite blade had less response than an unswept composite blade. Composite blades had more response than metal blades. Measurements are compared with theoretically based predictions. The 1-P blade response was significantly overpredicted using unimproved methods and somewhat overpredicted using improved methods. Unexpectedly high 2-P strain levels were measured and suggest the presence of nonlinear effects on blade response
Overview of a new slicing method: Fixed Abrasive Slicing Technique (FAST)
The fixed abrasive slicing technique (FAST) was developed to slice silicon ingots more effectively. It was demonstrated that 25 wafers/cm can be sliced from 10 cm diameter and 19 wafers/cm from 15 cm diameter ingots. This was achieved with a combination of machine development and wire-blade development programs. Correlation was established between cutting effectiveness and high surface speeds. A high speed slicer was designed and fabricated for FAST slicing. Wirepack life of slicing three 10 cm diameter ingots was established. Electroforming techniques were developed to control widths and prolong life of wire-blades. Economic analysis indicates that the projected add-on price of FAST slicing is compatible with the DOE price allocation to meet the 1986 cost goals
Atmospheric turbulence simulation for Shuttle orbiter
An improved non-recursive model for atmospheric turbulence along the flight path of the Shuttle Orbiter is developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model the time series for both gusts and gust gradients are generated and stored on a series of magnetic tapes. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digital filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digial filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 3 provides a description of the time series as currently recorded on magnetic tape. Conclusions and recommendations are presented in Section 4
Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing
A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack
Low- Phononic Thermal Conductivity in Superconductors with Line Nodes
The phonon contribution to the thermal conductivity at low temperature in
superconductors with line nodes is calculated assuming that scattering by both
nodal quasiparticles and the sample boundaries is significant. It is determined
that, within the regime in which the quasiparticles are in the universal limit
and the phonon attenuation is in the hydrodynamic limit, there exists a wide
temperature range over which the phonon thermal conductivity varies as .
This behaviour comes from the fact that transverse phonons propagating along
certain directions do not interact with nodal quasiparticles and is thus found
to be required by the symmetry of the crystal and the superconducting gap,
independent of the model used for the electron-phonon interaction. The
-dependence of the phonon thermal conductivity occurs over a well-defined
intermediate temperature range: at higher the temperature-dependence is
found to be linear while at lower the usual (boundary-limited)
behaviour is recovered. Results are compared to recent measurements of the
thermal conductivity of Tl2201, and are shown to be consistent with the data.Comment: 4 page
Prospect for relic neutrino searches
Unlike the relic photons, relic neutrinos have not so far been observed. The
Cosmic Neutrino Background (CB) is the oldest relic from the Big Bang,
produced a few seconds after the Bang itself. Due to their impact in cosmology,
relic neutrinos may be revealed indireclty in the near future through
cosmological observations. In this talk we concentrate on other proposals, made
in the last 30 years, to try to detect the CB directly, either in
laboratory searches (through tiny accelerations they produce on macroscopic
targets) or through astrophysical observations (looking for absorption dips in
the flux of Ultra-High Energy neutrinos, due to the annihilation of these
neutrinos with relic neutrinos at the Z-resonance). We concentrate mainly on
the first of these two possibilities.Comment: Talk given at the Nobel Symposium on Neutrino Physics, Enkoping,
Sweden, Augus 19-24, 2004; 16 page
- …