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FOREWORD
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SUMMARY

High speed dynamic response and stability tests were conducted on a model
Prop-Fan, with swept composite blades, which was found to be structurally
adequate over the entire operating range.,

TEST

The tests were conducted, in the NASA-Lewis Research Center 8 x 6 foot wind
tunnel, on the SR-3C-3 model Prop-Fan, advanced turboprop, operating in an
isolated nacelle installation. The SR-3C-3 model is nominally 62.2 cm

(24.5 in) in diameter, and has eight swept blades constructed of graphite/epoxy
composite material. It was operated at conditions of up to 0.9 Mach number
flight speed and 10000 RPM. Also, it was tested in non-uniform inflow, with
the rotor shaft yawed up to 15 degrees from the freestream flow direction.

DATA ANALYSIS and CORRELATTON to CALCULATIONS

Blade vibratory strain gage test data were reduced and analyzed to determine
response and stability trends for variations of operating parameters.
Non-dimensionalized blade strain sensitivities are presented as a function of
rotor power coefficient.

Calculations of blade response were made using lifting line aerodynamic and
finite element structural methodologies. The calculations are compared to test
data. Also, data for the SR-3C-3 model are compared to data for other,
previously tested, Prop-Fan models of both solid titanium and graphite
composite construction.

CONCLUSIONS

1) The SR-3C-3 model was structurally adequate over the range of operation,
demonstrating the success of composite structural tailoring in preventing
instability.

2) The swept composite blade had less response than the straight composite
blade.

3) The trends of 1-P blade response were well defined using
non-dimensional parameters,

4) The composite blades were more strain sensitive than the metal blades.
5) The SR-3C-3 1-P response was significantly overpredicted using unimproved

methods. Improved finite element calculation methods reduced the amount
of 1-P overprediction.
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SUMMARY (continued)

6) High measured 2-P strain levels suggest the presence of undetermined
non-linear effects on blade response.

RECOMMENDATTIONS

1) The improved finite element prediction method should be confirmed by
additional 1-P calculations.

2) Existing test data for other Prop-Fan models should be reviewed to
determine the extent of non-linear effects on blade response,

3) Non-linear effects should be included in future improvements to the blade
regponse calculation method.
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SYMBOLS AND ABBREVIATIONS

1.0
Blade Activity Factor = 100,000 /'b

- x? dx

16 D

0.2
Blade Section Chord Width, m
Blade Section Design Lift Coefficient

Power coefficient = 2wQ/pn?D® = w®Q/,,,pV%,+D°

Rotor Diameter, m

Excitation Factor = ¥ (V.,/348)?

Rotor Speed, RPM
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Air Density, Standard Sea Level = 1.2250 kg/m’
Prop-Fan shaft tilt, degrees
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1.0 INTRODUCTION

The efficiency advantage offered by the Prop-Fan has been demonstrated by
extensive testing, see Reference 1., It is well established that the Prop~Fan
can achieve up to a 30 percent improvement in efficiency, over conventional
means of propulsion. Since 1976, many experimental test programs have been
conducted with model Prop-Fans. During the course of these test programs, the
various model Prop-Fans were subjected to a complete range of operating
conditions, including extremes in loading, such that the structural integrity
of the blades as well as the advantages for rotor performance were
demonstrated. The structural testing has included investigations of blade
vibratory response due to angular inflow, unstalled flutter, buffeting, stall
flutter, and vibratory response to a non-uniform flow field due to installation
on an aircraft (wing/nacelle/fuselage) model.

The Prop-Fan models tested previously (see References 2, 3, and 4) were made
of solid steel or titanium, and performed very well in view of the rigorous
structural testing to which they were subjected. It is recognized that for
full scale Prop-Fan applications, solid metal blades would be too heavy.
Therefore, testing of Prop-Fan models constructed of lighter weight composite
materials has begun. The objective of these tests is to demonstrate the
efficiency advantage expected for Prop-~Fans, while maintaining structural
integrity in a design free of instabilities.,

As part of the continuing studies of Prop-Fan structural stability and blade
dynamic response, an 8-bladed model, designated the SR-3C-3, was designed by
NASA-Lewis, with Hamilton Standard support, and fabricated by NASA-Ames. The
SR-3C~-3 blade is a solid composite design of carbon fiber in an epoxy matrix.
Angular inflow and unstalled stability tests, with the Prop-Fan model mounted
on an isolated nacelle, were conducted in the NASA-Lewis 8 x 6 foot wind
tunnel, at free stream Mach numbers of 0.36 to 0.90. These tests were
conducted during the period of July 11 through 19, 1983 with Hamilton Standard
providing test support under its own funding. Then, under contract NAS3-24088,
Hamilton Standard analyzed the data acquired during these tests.

This report summarizes the results of the SR-3C-3 Prop-Fan model dynamic
response and stability investigation. Included are trends of measured blade
strain data with operating conditions. Total vibratory strain, modal vibratory
strain, P-~order strain and frequency spectra were analyzed. In addition, 1-P
dynamic responses were predicted, using theoretically based calculation
procedures for comparison to test results. The predicted structural mode
shapes and frequencies were provided by NASA-Lewis, while the airloads and
structural responses were calculated by Hamilton Standard, using a NASA-Lewis
supplied MSC/NASTRAN finite element model of the composite Prop-Fan. The
comparisons were used to evaluate the ability of the theoretical method to
predict blade loading and response, in order to verify the method's usefulness
as a Prop-Fan design tool.
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2.0 DESCRIPTION OF THE EXPERIMENTAL PROGRAM

The tests described in this report were conducted using the SR-3C-3 8-way
Prop-Fan model, mounted on an isolated nacelle, in the NASA-Lewis Research
Center 2.44 x 1.83 m (8 x 6 ft) wind tunnel. The primary purpose of these
tests was to determine the effects of yawed flow, at Mach numbers from 0.36 to
0.84, on the blade's vibratory response. In addition, the aeroelastic
stability of this configuration was investigated up to 0,9 Mach number.

2.1 Test Model

The SR-3C-3 Prop-Fan model is nominally 62.2 cm (24.5 in.) in diameter., The
Prop~Fan concept incorporates thin airfoils (2 percent thick at the tip) and
swept blades to achieve high aerodynamic efficiency with low noise generation.
The SR-3C-3 geometric shape is identical to that of the SR-3 model, which is
an earlier Hamilton Standard design. A description of the geometric
characteristics of this blade can be found in Reference 3. Table I is a
summary of the overall design parameters for the SR-3C-3 model,

The SR-3C-3 model blades were built by NASA-Ames and the hub was built by
Hamilton Standard. The blades are made of carbon fiber cloth layers in an
epoxy matrix. This model is one of a series of SR-3C blades of similar
construction. A more complete description of the blade series is given in
Reference 5. In the SR-3C-3 model, the carbon fibers are oriented at +45
degrees., The fiber ply orientation was chosen to provide the blade with
similar structural vibratory response frequencies to those for the metal
(titanium) SR-3 model, and to allow the model to be free of instabilities.

2.2 Wind Tunnel Facility

Figure 1 shows the SR-3C-3 model Prop-Fan rotor installed in the wind tunnel.
The SR-3C-3 model was mounted on an isolated axisymmetric nacelle test rig in
the NASA-Lewis 2.44 x 1.83 m (8 x 6 ft) wind tunnel. This rig was capable of

orienting the rotor drive through a range of tilt angles relative to the tunnel

axis, to provide non-uniform inflow excitation to the rotor. The rotor drive
is the same rig that has been used to test all the model Prop-Fans at
NASA-Lewis and contains a 746kW (1000 shp) air turbine. Reference 6 discusses
the wind tunnel and Reference 3 discusses the nacelle test rig in greater
detail,

2.3 Model Instrumentation

Foil strain gages mounted on the camber (suction) surfaces of selected blades

were used to measure strain due to blade flexure. The strain gages were mounted
by NASA-Lewis personnel, based on guidance provided by finite element analyses.

The strain gages were located at points along the blade mid-chord where the
stresses associated with the first four modes were calculated to be high.
Figure 2 shows the locations of the strain gages as they were applied to the
blade. The gages were used to measure inboard bending, mid-blade bending, and
mid-blade torsion (shear strain). Two opposing blades (numbers 1 and 5) had a
full complement of the three gages. In addition, selected gages were installed
on blades 2, 3 and 6, as described in Table II.



The strain gage signals were transmited from the rotor to the fixed frame
system using a rotary transformer device. The output was ultimately directed
to magnetic tape recording equipment.

2.4 Test Procedures

Initially, the tunnel was brought up to speed with the Prop-Fan windmilling
(zero power). Prop-Fan windmilling rotational speed is dependent on the blade
pitch angle setting and tunnel free stream velocity. The model rotational
speed, at this fixed blade angle and fixed tunnel Mach number, was
incrementally increased by increasing the power to the rotor. This was done
until an operating limit, such as a blade stress limit, rotational speed limit,
or rig power limit was reached. This was repeated for various shaft tilt
angles, with the tilt angle being varied from the control room. The whole
process was repeated for different Mach numbers, also varied from the control
room,

The tunnel was shut down in order to change blade pitch angle (ground
adjustable). An inclinometer was used to set the blade pitch angle at a
reference location on the blade (reference blade angle) prior to tunnel start
up. The reference location for the SR-3C-3 is at the 0.78 radial station.
The blade/hub collective pitch mechanical arrangement allowed for the

ad justment of all blades simultaneously. The blade angle was defined as the
average of the measurements for all of the blades.

2.5 Test Conditions

The conditions for these wind tunnel tests, after the tunnel has reached steady
state operation at between 0.7 and 0.9 Mach number, include an air density
equivalent to a standard day altitude of between 1524 to 2134 meters (5000 to
7000 feet), This is close to sea level conditions, as compared with the
Prop-Fan design cruise operating condition at 10668 meters (35000 feet)
altitude.

The parameters that were variable for the test were Mach number, Prop-Fan shaft
tilt angle, blade angle and rotor RPM. All of these parameters were remotely
controllable from the control room, except blade angle. A schedule of the Mach
numbers, blade angles, and rotor shaft tilt angles which were tested is found
in Table III. The RPM's tested are also found in the table and they range from
3730 RPM to 10000 RPM. The RPM was tested in 500 RPM increments, from the
windmilling RPM to the upper RPM limit. Figure 3 shows the operating envelopes
for this test, These boundaries include the RPM limits encountered, determined
by windmilling, the maximum drive power available or blade steady loading
safety limits (9000 RPM). An exception to the 9000 RPM limit was made in order
to probe for flutter at 0.9 Mach number, where 10000 RPM was allowed. The
upper bounds on rig tilt angle and blade angle were generally limited by high
strains. One set of boundaries is shown for each Mach number tested.

2.6 Data Reduction

Two types of magnetic data tapes were provided to Hamilton Standard by
NASA-Lewis. One contained the operating condition data found in Table IIT in
digital form, and the other contained the strain data, in analog form, for all
of the gages. The first type (condition data) was used during the data
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reduction process to formulate the operating condition tables and data trend
summary curves,

The second type (strain data) was also processed at Hamilton Standard using a
computer based instrumentation data tape playback system. The strain gage
signals were passed through a scaling amplifier and then through peak
detectors. Positive and negative peak strain amplitudes were averaged over
specific time intervals, and the averaged half-amplitude was determined. The
peak detector output was sampled by an analog-to-digital converter, calibrated
in engineering units and stored in computer memory. The data were then
processed by a computer based analysis system.

Once the sampled data resided in memory, a statistical treatment of the data
was used to define the "total strain". For the present work, a level defined
by the half-amplitude mean plus 2 times the standard deviation was used. That
isg

€ total = xbar + 2 * sigma.

The instantaneous strain will be below this level 97.72 percent of the time
during the data sampling period. That is, only 2.28 percent of the vibratory
strains are above this value.

The core of the data analysis system is a high speed mini-computer. This
computer was used to store the total strain data on a dual rigid disk drive,
These data were later used to create trend summary plots of total strain vs,
RPM and other test operating variables.

The data analysis system has the capability to perform spectral analyses of the
analog signals. The spectral data (in digital form) were stored on the disk
for every steady state run analyzed. An algorithm for the computer, developed
at Hamilton Standard, identified the peaks, above a specified noise level, from
the spectral data. Tables of P-order strain values (strains at integer
multiples of the rotational speed) and trend summary plots were made from these
data, and will be discussed later in the report.
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3.0 ANALYTICAL TECHNIQUES

3.1 Approach

Extensive use was made of the MSC/NASTRAN finite element analysis computer
program, described in reference 7, for the 1-P structural dynamic analysis of
the model blade. Careful modeling techniques are required in order to create
the finite element grids necessary to describe the Prop-Fan blade,

For most of the calculations, a finite element model for the SR-3C-3 blade,
provided by NASA-Lewis, was used. This model is composed of CTRIA3 elements,
and a schematic representaton of the model is shown in Figure 4. Later in the
project, an improved finite element model was generated by Hamilton Standard
using CQUAD4 elements. It is also shown in Figure 4. A limited number of
calculations were performed using this model. The study on which the improved
model was based is described in Reference 8.

The theoretically based methods used for this study, to predict the 1-P
response of the blade to angular inflow, have been used in previous Prop-Fan
structural dynamic studies, as described in references 2 and 3. A short
discussion of these methods is given here,

Figure 5 shows a block diagram of the prediction methods used in this analysis.
The computer codes used in this analysis are listed in Table IV, where they are
matched to their numerical designation.

Starting at the top of Figure 5, the model description, steady airloads (as
computed by the HS/HO39 and HS/HO45 codes), and centrifugal load effects were
input into MSC/NASTRAN to determine a steady displaced blade position. The 1-P
airloads were computed for the angular inflow conditions, using the HS/H039
flow field analysis and the HS/H337 skewed wake analysis. These airloads were
distributed over the finite element model using HS/F194, and input into the
MSC/NASTRAN structural dynamics analysis. A post-processor code was used to
determine the blade strain at the gage locationms.

3.2 Calculated Modes and Frequencies

Blade mode shapes and frequencies were determined by NASA-Lewis personnel using
their NASTRAN CTRIA3 model for the SR-3C-3. Schematic diagrams of the
calculated modes, in order of their respective frequencies are shown in Figure
6a, for the non-rotating (zero RPM), and the 8600 RPM conditions. The modal
frequency is shown beneath each modal pattern. The first six modes are shown
for the non-rotating condition, and the first four modes are shown for the 8600
RPM condition. It is seen that there is little difference in the calculated
mode shapes between the zero and 8600 RPM conditions, for the first four modes.
The differences in the calculated frequencies are significant, however, showing
the effects of centrifugal stiffening. Centrifugal stiffening raises the modal
frequencies. This effect is greatest for the lower modes.

Also shown in Figure 6a are tracings of holographic patterns from photographs
taken during a vibration test. This test was conducted at NASA/Lewis, on a
non-rotating SR-3C-3 model blade vibrating at its natural frequencies. The
measured frequencies are shown beneath each figure. Although the measured and
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calculated mode shapes are generally similar, differences are seen for all six
modes. 1In particular, the fifth calculated mode shows a much different
displacement pattern compared to the holographic data. The fifth measured mode
is similar to the sixth calculated mode, which appears to be a second torsional
mode. The correlation between the calculated and measured non-rotating
frequencies is good for all of the modes, except the third and fifth modes.
Here, the frequencies differ by almost 15 percent. It is not known how these
differences affect the values of calculated blade strain.

Calculatons of blade mode shapes and frequencies for the zero RPM conditionm,
made by Hamilton Standard using the CQUAD4 model, are shown in Figure 6b. The
shapes derived using the CQUAD4 model are similar to those for the NASA CTRIA3
model. However, the CQUAD4 model frequencies generally match the holographic
test data more closely.

The critical speeds are seen in Figure 7, which is a Campbell diagram showing
the calculated frequency data, discussed above. Generally, these frequencies
are typical of Prop-Fan models. They will be compared to the rotating results,
observed during the wind tunnel tests, later in the report.

3.3 Calculated Vibratory Stréins

The results of vibratory response calculations for six cases are given in
Table V. These cases were selected from the test points given in Table III.
The analytical predictions were performed at the measured wind tunnel
conditions. These test cases were selected so as to provide a range of
operating conditions, such as RPM, Mach number and rotor power, so that
important trends could be identified., The test runs are listed by a reading
number, and therefore the calculated cases are designated in the same manner.
The operating condition parameters of air density and temperature are shown
for each case.

Blade strains were calculated using the NASA-supplied CTRIA3 NASTRAN model for
all six selected conditions. The improved CQUAD4 model was used to calculate
strains for case number 6 only. This case is most closely associated with the
design operating condition.

The measured strains for each case which was selected for prediction are also
listed in Table V., A detailed comparison of measured and predicted strains is
given in Section 4.8. The calculated strains represent the vibratory blade
response caused by the periodic aerodynamic loading excitation due to angular
inflow. The strains are calculated at the strain gage locations, as previously
discussed. These locations represent the following strain measurement
positions, inboard bending, mid-blade bending and mid-blade shear (torsiom).
The blade responses are given as values of strain divided by excitation factor
(EF), a quantity which is sometimes known as "strain sensitivity". The use of
EF for normalizing strain data is intended to account for the dependence of
strain on inflow angle and flight velocity (dynamic pressure). This was shown

to be good practice in previous studies (References 2 and 3), and will also be
discussed later in this report.

Review of the calculated blade strain sensitivities, shown in Table V, reveals
them to be only weakly dependent on changes in operating condition. Strain

sensitivity varies little over the range of RPM and Mach number studied. This
is partially a result of normalizing the strain by EF. The only significant




change is the increase in strain sensitivity seen in cases 1 and 6 at
conditions of large shaft power., The reason for this is not clear, but it is
probably related to a change in the spanwise distribution, as well as the
magnitude, of the aerodynamic loading on the blade. The trends of strain with
operating condition will be examined further in the discussion of the measured
test data, to follow.
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4,0 TEST DATA EVALUATION AND COMPARTISON WITH CALCULATIONS

The objectives of this SR-3C-3 Prop-Fan model test were:

1) To demonstrate the effectiveness of structural tailoring, using
composites, in preventing blade instability (flutter clearance).

2) To determine the effect of pure angular inflow on the vibratory
response of composite material Prop-Fan model blades.

3) To verify and evaluate theoretical calculations by comparison to
test results,

4) To compare the SR-3C-3 test results to the results of other Prop-Fan
model tests.

4,1 Flutter Clearance

The SR-3C~3 Prop-Fan was tested, at zero tilt angle, at flight speeds up to
0.9 Mach number and rotational speeds up to 10000 RPM. It was demonstrated to
be free of unstalled flutter instabilities over this entire operating range.
This model was intended to be stable over a large portion of its operating
range, by virtue of the structural tailoring of its composite ply layups.
Further discussion of the stability analysis of this model is given in
Reference 5.

4,2 Total Strain Measurements

Blade strain measurements were made as described above, during wind tunnel
testing on the Prop-Fan operating with its drive shaft tilted relative to the
tunnel centerline, to provide angular inflow to the rotor. As discussed
previously (Section 2.6), the measured total strain amplitude was extracted
from the data using a statistical approach. It represents the vibratory strain
half amplitude mean plus twice the standard deviation (xbar + 2 * sigma).

Total vibratory strain measurements were obtained at steady state operating
conditions. Appendix I contains a table of the total strain values for all of
the gages, which are listed by reading number. A reading number identifies a
data sample taken at a single operating condition. The operating conditions
these runs represent are found in the performance table, Table III, as
discussed in Section 2.5.

For this study, plots of total vibratory strain were made, from data at all the
steady state conditions., Total strain was plotted as a function of rotational
speed (RPM) for various tilt angles, and combinations of blade angles and Mach
number. Samples of these plots are shown in Figure 8, which contains plots of

total vibratory strain as a function of rotational speed, at a Mach number of
0.7 and a blade angle of 59.0 degrees. Data for tilt angles of 0.0,
3.0, and 5.0 degrees are shown.

These data indicate that blade strain increases significantly with increased

tilt angle, as expected. There is some residual strain for the zero tilt angle
condition, probably due to several causes, There may be a small angular error
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in the physical rotor shaft alignment to the tunnel centerline, and the
pylon/nacelle may be introducing a small degree of non-uniformity to the tunnel
flow. Also, blade response may be induced by the small amount of tunnel
turbulence present.

Note, in Figure 8, that a strain peak occurs at or near 8000 RPM. This is due
to the first mode/2-P critical speed crossover. The calculated first mode
critical speed is indicated in Figure 7 to be lower, at about 7000 RPM. The
measured critical speed will be discussed in the next section.

4.3 Spectral Analysis

Spectral analysis of the strain gage signals is a useful tool for identifying
the harmonic P-order and non-P-order (modal) responses of the blade. Spectral
analyses were conducted for all of the steady state runs, the data for which
were stored permanently on computer disk. For this study, spectral plots were
made from these data for selected test runs, for gages BGl-1, BGl-3, BG5-2 and
BG5-3. These data represent respectively, inboard bending and shear on blade
number 1, and mid-blade bending and shear on blade number 5.

Figure 9 shows typical samples of the spectral plots, giving strain amplitude
as a function of frequency for a rotational speed of 7300 RPM, a Mach number of
0.7 and a blade angle of 59.0 degrees. The tilt angle for this run

was 5.0 degrees., The plots show significant P-order response, while at the
same time showing low amplitude modal response. Note that the shear strain
spectra for the two blades are quite similar, showing the consistency of the
test data,

The 1-P blade loads dominate, as was expected, since the aerodynamic loading is
due primarily to pure angular inflow, The 2-P loads are of significant
amplitude, probably due to the fact that this condition is near the 2-P/first
mode critical speed. The source of the 2-P excitation is not known at this
time. The 2-P response may be evidence of non-linear effects, due to blade
sweep and flexibility. Further study of these data, and the test data which

exist for other Prop-Fan models, would be helpful in clarifying the cause of
this phenomena.

It is seen from the spectra in Figure 9, that non-p-order peaks are of very low
magnitude. These peaks, and their underlying broadband humps, were used to
define the modal responses. The low level seen for the modal responses is due
to the small amount of turbulence in the wind tunnel, which is the source of
random excitation for the blades.

4.4 Modal Frequencies and Comparisons to Predictions

Blade modal frequencies for rotating operating conditions were identified using
the blade strain signal spectra, described previously. Campbell diagrams
illustrating the blade modal response were generated and are shown in Figure
10, Blade modal response frequency is plotted as a function of rotational
speed, for data from the inboard bending, mid-blade. bending, and shear gages.
Also shown on these plots are the calculated frequencies (see Section 3.3), and
the holographically measured frequencies at zero RPM, as supplied by
NASA-Lewis. Calculations of modal frequency, as a function of RPM, were
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performed using the CTRIA3 NASTRAN model. The CQUAD4 calculations and
holographic measurements were performed for the zero RPM condition.

Inboard bending gage. The modal frequency test data indicated for the inboard
bending gage clearly identify the first mode. Data for the higher order modes,
however, contain much scatter. The inboard gage responds primarily to the
first bending mode, with little response to the other modes, which accounts for
the lack of clarity in the higher modes. Also, as was noted earlier, the modal
responses indicated by the spectral data were of small magnitude, and thus
difficult to identify, which could add to the data scatter,

It was observed that the measured first mode is a stronger function of
rotational speed than the CTRIA3 model calculated curve. At the higher speeds,
the test response frequencies for the first mode were higher than predicted.
This indicates FEA modelling deficiencies.

Calculations of modal frequency as a function of RPM, using the improved CQUAD4
model, would be helpful in verifying the improvement in modelling centrifugal
effects in the structural analysis. Also, the addition of aeroelastic effects
in the structural analysis would improve the prediction of modal response
frequencies.

Mid-blade bending gage. The modal responses indicated by the mid-blade bending
gage are more consistent than the inboard gage data. The mid-blade gage is
located in a position on the blade that is predicted to respond more readily to
higher mode excitation. The test data indicate five response modes, whereas
the calculations show only four modes over the same frequency range. The cause
of the third experimental mode is not clear. These responses are of very low
amplitude, as are the inboard gage data.

Correlation between test and prediction indicates that the measured second, and
higher order mode frequencies are substantially lower than the CTRIA3
calculated values, although they have similar slopes. Again, the measured
first mode has a steeper slope and higher frequencies than the calculations.

Shear gage. The shear gage modal response is similar to that seen for the
mid-blade bending gage, except that it gives only weak indications of a mode in
the 550 hz region. As before, the measured first mode response frequencies are
higher than the calculated values, The higher mode test data show lower
frequency values than the predictions. These results again indicate the need
for improvement in the CTRIA3 structural model, in order to more accurately
represent the response behavior of the blade.

4,5 P-Order Vibratory Strains

A computer code, developed by Hamilton Standard, was used to search the
spectral data stored on disk, to identify the strain peaks, and determine their
values., These "peak values" were also stored on disk for tabulating and
plotting. The only peaks saved were above a minimum strain level. 1In this
study, the minimum value was 0.5 micro-strain. Appendix II is a listing of the
P-order values of vibratory strain, tabulated according to reading number,
along with selected operating parameters.
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For this study, with the Prop-Fan operating in an environment of pure angular
inflow (except for nacelle and pylon effects), the dominant 1-P blade responses
are of primary interest.

Effect of rotational speed. The 1-P data have been summarized in Figures 11
through 16. Here, micro-strain is plotted as a function of rotational speed
for the three gages on blade number 5.

These figures display test data for operation from 0.36 through 0.85 Mach
number, The combinations of Prop-Fan shaft tilt angle and blade angle used for
each Mach number condition are given in Table VI. The test data generally
show the 1-P vibratory strain increasing with rotational speed for the inboard
bending gage and the mid-blade bending gage. The inboard gage strain
amplitudes are consistently higher.

The shear gage data behave in a similar manner, up to 0.7 Mach number. At that
point, the 1-P vibratory strains tend to decrease with increasing rotational
speed. This may be an effect of compressibility, due to a shift in the
chordwise aerodynamic center location. This would modify the torsional
loading, while not affecting the bending loads. It should be noted that,
although the mid-blade bending gage is located very close to the shear gage, it
does not show this drop—off.

Effect of Mach number., The effect of Mach number on 1-P strain data is shown
in Figure 17. Here, 1-P micro-strain measured by the inboard bending gage is
given for the rotor operating at about 7000 RPM, at a tilt angle of 4 degrees.
As indicated, some of the data were measured directly at 4 degrees tilt and
some were interpolated from test data measured at other tilt angles.

The data show that 1-P micro-strain increases rapidly up to about 0.8 Mach
number, and then levels off. The initial increase is due to dynamic pressure
effects. The leveling may be due to other effects, which become more important
than dynamic pressure at high speed. These stronger effects could include the
decrease in angle of attack difference, between the advancing and retreating
blades, with increased forward speed, and compressibility effects.

Effect of blade angle. The test data show that blade angle (rotor power) has
little effect on 1-P strain.

4,6 Shaft Tilt and the Excitation Factor

The effect of Prop-Fan rotor shaft tilt is shown in Figures 18 through 20,
where 1-P and 2-P vibratory strain are plotted as functions of tilt angle.
Each set of points has been fitted by a hyperbolic curve generated by a
computer algorithm. The curves are nearly linear, however.

Figure 18 displays data for 0.6 Mach number operation at a blade angle of 57.0
degrees. The figure contains plots for test data at 5500, 6000, 6500 and 7000
RPM. The data shown in Figure 19 were taken during 0.7 Mach Number tests, for
a blade angle of 59.0 degrees. Figure 20 displays data taken during 0.8 Mach
number tests, for a blade angle of 61.0 degrees.

The test data trends show increasing vibratory strain with increasing tilt
angle. This trend is expected since increasing the tilt angle increases the

14



difference in angle of attack between the advancing and retreating blades. The
angle of attack difference is the source of the vibratory aerodynamic loading.
There is a linear dependence on shaft tilt angle, away from the origin, for
both 1-P and 2-P strains.

Excitation Factor. The linear dependence of 1-P blade strain on shaft tilt
suggests the use of the term "Excitation Factor" for the analysis of data
trends. Excitaton Factor (EF) is defined as:
2
EF = 4 ( Veq / 348 )

where YV is the tilt angle in degrees and Veq is the equivalent sea level
airspeed in knots. EF is proportional to Prop-Fan shaft tilt angle and dynamic
pressure,

For a uniform, steady inflow to an untilted rotor, theoretically there is no
aerodynamic excitation to induce a forced response of the blades. If the rotor
shaft is tilted at some angle to this uniform flow, a sinusoidal variation in
velocity at the blade will occur with a frequency of 1-P., This will produce a
1-P airload on the blade, that is some function of the mean flow velocity and
density (dynamic pressure) and the shaft tilt angle.

For most operating conditions of interest, that is, away from critical speeds,
it was shown above that blade stress is a linear function of shaft tilt angle.
Past study has shown a linear dependence of blade stress on dynamic pressure,
also. This allows the use of EF to normalize blade stress. In fact, this
concept has been in use for many years. Other demonstrations of this concept
for Prop-Fan data are given in References 2 and 3. Note that the quantity
strain divided by EF is sometimes known as "strain sensitivity".

4,7 Power Coefficient

The effect of power variation on blade strain can be studied through the use of
the term "power coefficient". This term has been in use for many years, in
application to propeller data analysis. The power coefficient is a
non-dimensional function of the dynamic pressure, due to rotational speed at
the blade tip, and diameter cubed. That is, everything else held constant, the
power the rotor absorbs is proportional to the tip dynamic pressure and
diameter cubed. Power coefficient is defined as:

3
Cp=_ 2TQ = N q
v 2 5 2 3
Qn D 1/2 QVtip D

where Q = air density in kg/m3, Q = rotor torque in n-m, n = rotational speed
in revolutions per second, Vtip = blade tip rotational speed in m/s, and

D = rotor diameter in m. Use of the power coefficient normalizes the effect of
rotor size and speed in the data. In the range of linear aerodynamics, the
power coefficient includes the effect of blade angle.
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4,8 Strain Sensitivity vs. Power Coefficient

A summary of the test data, normalized as described above, is given in

Figure 21, where for each Mach number, the data for all blade angles, all RPM's
and all tilt angles are shown in one plot. Figure 21 displays 1-P strain
sensitivity plotted as a function of power coefficient, from the output of the
inboard bending gage. This gage had the highest response amplitudes due to 1-P
forced excitation.

These curves summarize the data for each Mach number tested. For Mach numbers
of 0.6 or higher, the data collapse into a single curve. For the 0.36 Mach
number condition, the effect of blade angle appears significant, with the data
forming a different trend curve for each blade angle tested. Strain
sensitivity decreases with increasing blade angle for constant power
coefficient.

In general, the curves fitted to the data are parabolic, with strain
sensitivity increasing somewhat as the power coefficient increases. For the
windmilling points (zero power coefficient) at 0.6 Mach number and above, the
strain sensitivity value is consistently about 60, The trends of strain
sensitivity with power coefficient are remarkably similar over the Mach number
range tested. Strain sensitivity increases somewhat with increasing Mach
number, up to 0.8 Mach, and then decreases slightly.

4,9 Comparison of 1-P Measurements to Predictions

Calculated strain sensitivities for six conditions are shown in Figure 21, in

addition to the measured test data. These operating conditions correspond to

those for six test runs (see Section 3.3). Calculations were made for all six
cases using the CTRIA3 NASTRAN model. Calculations using the improved CQUAD4

model were made for the 0.8 Mach number (design point) case, only.

The blade angle used for the 0.36 Mach number case was 47.7 degrees. The
calculated strain sensitivity for this case is considerably higher (88 percent)
than the measured sensitivity, as shown in Table V.

For the higher Mach number conditions, the CTRIA3 calculations also
significantly overpredicted the measured values (50 to 95 percent). The
improved CQUAD4 model reduced the overprediction to about 33 percent at the
design point condition (case 6A).

Overprediction of measured blade response was not evident in studies of the
dynamic response of metal Prop-Fan blades (Reference 2, 3 and 4). A number of
causes may be responsible. Non-linear effects, evident from the significant
2-P responses, discussed earlier, are not included in the prediction
methodology., Also not included are twist magnification and other aeroelastic
effects. Although beyond the scope of the present study, data from this and
previous Prop-Fan model testing should be examined, to determined the extent of
non-linear and aeroelastic effects. TIf important, these should be included in
future improvements to the calculation procedure,
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4,10 Comparison to other Prop-Fan Models

Dynamic response test results for the SR-3C-3 were compared to results for
other blade models, previously tested. This comparison was made with blade
strain sensitivity data derived from other Prop-Fan tests conducted in the
NASA-Lewis 8 X 6 wind tunnel, using the plotting format of Figure 21. This is
given in Figure 22, which shows a set of plots, by Mach number, of blade strain
sensitivity as a function of power coefficient. Comparisons are shown with the
SR-2C composite material model, and the SR-3 and SR-5 solid titanium models,
all of which were discussed in Reference 2.

The strain sensitivity of the swept composite SR-3C-3 model is generally lower
than that of the straight composite SR-2C model. This indicates the benefit of
blade sweep in reducing blade response. The benefit may disappear at extremely
high blade sweep, noting that the highly swept SR-5 model strain sensitivity is
generally higher than that for the moderately swept SR-3 model.

As shown in Figure 22, the composite material SR-2C and SR-3C-3 blades have
greater strain sensitivities than the solid metal SR-3 and SR-5 blades. This
may be due, in part, to differences in blade material stiffness and, inertia
properties. In addition, the non-linear effects discussed earlier may
influence blade responses. Further studies are needed to define this behavior.
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5.0 CONCLUSIONS

As a result of this study of SR-3C-3 model Prop-Fan blade dynamic response and
stability, the following conclusions are made:

1)

2)

3)

4)
5)

6)

7)

This composite blade was structurally adequate over its entire operating
range.

The swept composite blade showed less response than the straight composite
blade.

The trends of 1-P blade response were defined using non-dimensional data
(strain sensitivity vs. power coefficient).

Composite blades have higher strain sensitivity than metal blades.

1-P blade response was overpredicted 50 percent at the design point, and
up to 95 percent at off-design conditions, using unimproved methods.

An improved finite element modelling method reduced overprediction of 1-P
response to about 33 percent, at the design point operating condition.

High 2-P response levels suggest the existence of non-linear effects, not
included in the prediction methodology.
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6.0 RECOMMENDATIONS

Based on the conclusions of this study, the following recommendations are made:
1) The existing test data for all Prop-Fan models should be reviewed to
determine the non-linear effects on blade response.

2) Non-linear effects should be included in the blade response prediction
methodology.

3) The improved CQUAD4 FEA model should be used for additional calculations
of SR-3C-3 blade modal and forced response.

21/22




7.0 REFERENCES

1.

Gatzen, B.S.; "Prop-Fan Potential and Technology Summary", Presented at
the Japan Society for Aeronautical and Space Sciences meeting, Tokyo,
Japan, November, 1984.

Bansal, P.N.; Arseneaux, P.J.; Smith, A.F.; Turnberg, J.E. and

Brooks, B.M.; " Analysis and Test Evaluation of the Dynamic Response and
Stability of Three Advanced Turboprop Models'", NASA CR-174814, August,
1985.

Smith, A.F.; "Analysis and Test Evaluation of the Dynamic Response and
Stability of Three Advanced Turboprop Models at Low Forward Speed",
NASA CR-175026, December, 1985.

Smith, A.F.; "Analysis and Test Evaluation of the Dynamic Stability of
Three Advanced Turboprop Models at Zero Forward Speed", NASA CR-175025,
December, 1985.

Turnberg, J.E.; "Unstalled Flutter Stability Predictions and Comparisons
to Test Data for the SR-3C-X2 Model Prop-Fan", NASA CR-179512, October,
1986.

Swallow, R.J. and Aiello, R.A.; "NASA Lewis 8 X 6 Supersonic Wind
Tunnel", NASA T™ X-71542, May, 1974,

MacNeal, R.H.; " The NASTRAN Theoretical Manual", (Level 15.5), MacNeal
Schwendler Corp., December 1972,

Smith, A.F. and Brooks, B.M.; "Dynamic Response of Two Composite Prop-Fan
Models on a Nacelle/Wing/Fuselage Half Model", NASA CR-179589,
October, 1986.

23/24




TABLE I

DESTGN CHARACTERISTICS OF THE SR-3C-3 MODEL PROP-FAN

Parameter Value
Diameter, cm (in) 62.2 (24.5)
Number of blades 8
Activity Factor/blade, AF 235
Activity Factor, Total 1880
Airfoil series (NACA) outboard 16

inboard 65/CA
Integrated design 1lift coefficient, Cl 0.214
Blade aerodynamic tip sweep, degrees 34.5
Material Carbon/Epoxy fiber composite

Fiber orientation (1), degrees 0, +45

Cruise Conditions:

Speed, Mach number 0.8
Altitude, km (ft) 10.7 (35,000)
Power loading, kW/m2 (shp/ft2) 300 (37.5)
Tip rotational speed, m/s (fps) 244 (800)
Power coefficient, Cp 1.695
Advance Ratio, J 3.056
Cruise efficiency, percent 78.4
Cruise noise (2), dB 144.5

(1) Zero degrees fiber orientation parallel to pitch change axis.

(2) Maximum sideline noise at blade passage frequency.
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TABLE TIT

STRAIN GAGE DESIGNATIONS FOR SR-3C-3 RESPONSE TESTS

Radial
Gage station Blade number
Description cm 1 2 3 4 5 6 7
Inboard
Bending 11.9 BG1-1 BG2-1 BG3-1 - BG5-1 BG6-1 -
Mid-blade
Bending 24.6 BG1-2 BG2-2 - - BG5-2 BG6-2 -
Shear 26.0 BG1-3 - - - BG5-3 - -
Gages are designated BGx-y, where x = blade number and y = gage
number. ‘
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TABLE IV

HAMILTON STANDARD COMPUTER CODES USED FOR

BLADE DYNAMIC RESPONSE ANALYSIS

Code

Designation Description

HS/HO39 Potential flow field analysis, used to determine
the influence of the nacelle on the inflow to
the rotor,

HS/HO45 Lifting line, quasi-static performance strip
analysis, 2-D airfoil section data, Goldstein
wake induction, azimuthal variations.

HS/H337 Lifting line, quasi-static performance strip
analysis, 2-D airfoil section data, skewed
wake induction, azimuthal variations.

HS/F194 Distributes airloads over finite element grid.

MSC/NASTRAN Finite element analysis used for calculating
vibratory mode shapes and frequencies, and
dynamic responses of Prop-Fan model blades.

STRAINNP Converts element stresses from MSC/NASTRAN to

strains at the strain gage locations.
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TABLE VI

SR-3C-3 MODEL 1-P VIBRATORY STRAIN TEST CONDITIONS

Measurements of 1-P vibratory blade strain data, at each Mach
number tested, were acquired at the following combinations of
shaft tilt angle and blade angle ( ©3/4), over the allowable RPM
range. The data are plotted as 1-P micro-strain vs. RPM in the
indicated figure.

Tilt Blade
Mach Angle Angle

Figure number Deg. Deg.
11 0.36 8.0 44,5
8.0 48.0

15.0 48.0

15.0 51.6

12 0.6 7.0 54.6
4.0 57.8

7.0 57.8

7.0 59.1

7.2 59.4

13 0.7 5.0 57.8
5.0 58.4

3.0 59.1

5.0 59.1

5.0 61.5

14 0.8 4.0 59.1
2.0 61.5

4.0 61.5

4.0 62.5

15 0.84 2.0 62.5
4.0 62.5

16 0.85 4.0 62.5
4.0 63.7

34




[ EEEET)
I EREERYY]

FIGURE 1. SR-3C-3 MODEL PROP-FAN INSTALLED IN THE NASA-LEWIS 8X6 TUNNEL.
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BLADE POSITION

3i.1 cm Tip Radius
; —1 Inboard Bending

-2 Mid-blade Bending
-3 Shear

26.0 cm

Camber Side

Blade Fitch Axis

L.

Ct Prop—Fan Centerline

Figure 2 SR~3C-3 Prop—-Fan Schematic showing the strain gage
locations, NASA/Lewis 8 X 6 Wind Tunnel tests.
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Test envelopes for the SR-3C-3 model Prop—Fan 8 X &

wind tunnel tests at NASA/Lewis.

e = Strain Limit at Max Inflow Angle
W = Windmill Speed
P = Rig Power Limit
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1P DYNAMIC ANALYSIS

OPERATING CONDITION
INFLOW ANGLE

Y
I |
| HS/H (39 |

|
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| ATIRLOADS |

[
X '
I HS/F194 I

DISTRIBUTE |
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FEA MODEL
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MSC NASTRAN

SOLUTION 64

NONLINEAR STATIC
ANALYSIS

SOLUTION 68

FREQUENCY
RESPONSE ANALYSIS

I
Y

POST PROCESSOR
STRAIN
STRESS

DEFLECTIONS

v
|

FIGURE 5.  DYNAMIC RESPONSE PREDICTION METHOD
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> MSC/NASTRAN CALCULATIONS (CQUAD4)

& Holographic Tests —NASA/Lewis

&F
1000 o /7 2
4 "
SP
800 &
rd
-~
. 4F
&00 &
Response
Frequency N ‘mode
HZ =
400 o
mode
200 ¥y
T 1P
0 UE 1 1 L { { 1 1 i i
O 2000 4000 &000 8000 10000

Propeller Speed - RFM

Figure 7 SR-3C-3 model Prop-Fan blade., natural frequencies
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MSC/NASTRAN Calculations (CTRIA3)
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Figure 8 Total Vibratory strain vs propeller speed for the

SR-3C-3 model Prop-Fan blade response tests, NASA/

Lewis.

Mach Number = 0.7, Blade Angle = 59.0 Deg.
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Figure 11 SR-3C-3 BLADE DYNAMIC RESPONSE TO
ANGULAR INFLOW - 0.36 MACH
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Blade Angles, SR-3C-3 Prop-Fan tests at the 8 x 6
Wind Tunnel, NASA/Lewis. Inboard bending Gage BG5-1. 63
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Wind Tunnel, NASA/Lewis. Inboard bending Gage BG5-1.
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APPENDIX TII

P-order Strain Tabulation.
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