91 research outputs found

    Simultaneous determination of irinotecan hydrochloride and its related compounds by high performance liquid chromatography using ultraviolet detection

    Get PDF
    A new simple, precise and accurate high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of irinotecan (CPT-11) and two related compounds viz., 7-ethyl-10 hydroxycamptothecin (SN-38) and camptothecin (CPT) in pharmaceutical dosage forms. Chromatography was accomplished using a reversed-phase C18 column and ultraviolet (UV)detection and an isocratic mobile phase consisting of 3 % v/v triethylammonium acetate buffer (pH 3) and acetonitrile (70:30 v/v). The linear range of quantitation for all the compounds was 0.1-10 μg/mL. The limit of quantitation for all the compounds ranged between 0.01-0.05 μg/mL. The method has the requisite accuracy, selectivity, sensitivity and precision to assay of CPT-11 and related compounds in pharmaceutical dosage forms and bulk API

    Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems

    Get PDF
    Cervical cancer is the second-most-common cause of malignancies in women worldwide, and the oncogenic activity of the human papilloma virus types (HPV) E7 protein has a crucial role in anogenital tumors. In this study, we have designed a therapeutic vaccine based on chitosan nanodelivery systems to deliver HPV-16 E7 DNA vaccine, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer. We have developed a Nano-chitosan (NCS) as a carrier system for intramuscular administration using a recombinant DNA vaccine expressing HPV-16 E7 (NCS-DNA E7 vaccine). NCS were characterized in vitro for their gene transfection ability. Results: The transfection of CS-pEGFP NPs was efficient in CHO cells and the expression of green fluorescent proteins was well observed. In addition, NCS-DNA E7 vaccine induced the strongest E7-specific CD8+ T cell and interferon γ responses in C57BL/6 mice. Mice vaccinated with NCS-DNA E7 vaccine were able to generate potent protective and therapeutic antitumor effects against challenge with E7-expressing tumor cell line, TC-1. Conclusions: The strong therapeutic effect induced by the Chitosan-based nanodelivery suggest that nanoparticles may be an efficient carrier to improve the immunogenicity of DNA vaccination upon intramuscular administration and the platform could be further exploited as a potential cancer vaccine candidate in humans. © 2014 Tahamtan et al

    Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    Get PDF
    The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA), a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects

    Chitosan nanoparticles as a potential nonviral gene delivery for HPV-16 E7 into mammalian cells

    Get PDF
    Chitosan nanoparticles (CS NPs) were prepared as a carrier for Human papillomavirus type 16 HPV-16) E7 gene and their gene transfection ability were evaluated in vitro . The plasmid expressing green fl uorescent protein (pEGFP) was used as a reporter gene. Gel electrophoresis demonstrated full binding of CS NPs with the pDNA. The transfection of CS-pEGFP NPs was effi cient in CHO cells and the expression of green fl uorescent proteins was well observed. The expression of E7 proteins was confi rmed under SDS-PAGE and western blot analysis. As a conclusion CS NPs may serve as an eff ective nonviral carrier for delivery of nucleotides into eukaryotic cells. Copyright © 2014 Informa Healthcare USA, Inc

    Ex Vivo Evaluation of Insulin Nanoparticles Using Chitosan and Arabic Gum

    Get PDF
    Polymeric delivery systems based on nanoparticles have emerged as a promising approach for peroral insulin delivery. The aim of the present study was to investigate the release of insulin nanoparticulate systems and ex vivo studies. The nanoparticles were prepared by the ion gelation method. Particle size distribution, zeta potential, and polydispersity index of the nanoparticles were determined. It was found that the nanoparticles carried positive charges and showed a size distribution in the range of 170–200 nm. The electrostatic interactions between the positively charged group of chitosan and negatively charged groups of Arabic gum play an important role in the association efficiency of insulin in nanoparticles. In vitro insulin release studies showed an initial burst followed by a slow release of insulin. The mucoadhesion of the nanosystem was evaluated using excised rat jejunum. Ex vivo studies have shown a significant increase in absorption of insulin in the presence of chitosan nanoparticles in comparison with free insulin

    Morphological and molecular characteristics of spheroid formation in HT-29 and Caco-2 colorectal cancer cell lines

    Get PDF
    Background: Relapse and metastasis in colorectal cancer (CRC) are often attributed to cancer stem-like cells (CSCs), as small sub-population of tumor cells with ability of drug resistance. Accordingly, development of appropriate models to investigate CSCs biology and establishment of effective therapeutic strategies is warranted. Hence, we aimed to assess the capability of two widely used and important colorectal cancer cell lines, HT-29 and Caco-2, in generating spheroids and their detailed morphological and molecular characteristics. Methods: CRC spheroids were developed using hanging drop and forced floating in serum-free and non-attachment conditions and their morphological features were evaluated by scanning electron microscopy (SEM). Then, the potential of CSCs enrichment in spheroids was compared to their adherent counterparts by analysis of serial sphere formation capacity, real-time PCR of key stemness genes (KLF4, OCT4, SOX2, NANOG, C-MYC) and the expression of potential CRC-CSCs surface markers (CD166, CD44, and CD133) by flow cytometry. Finally, the expression level of some EMT-related (Vimentin, SNAIL1, TWIST1, N-cadherin, E-cadherin, ZEB1) and multi-drug resistant (ABCB1, ABCC1, ABCG2) genes was evaluated. Results: Although with different morphological features, both cell lines were formed CSCs-enriched spheroids, indicated by ability to serial sphere formation, significant up-regulation of stemness genes, SOX2, C-MYC, NANOG and OCT4 in HT-29 and SOX2, C-MYC and KLF4 in Caco-2 spheroids (p-value < 0.05) and increased expression of CRC-CSC markers compared to parental cells (p-value < 0.05). Additionally, HT-29 spheroids exhibited a significant higher expression of both ABCB1 and ABCG2 (p-value = 0.02). The significant up-regulation of promoting EMT genes, ZEB1, TWIST1, E-cadherin and SNAIL1 in HT-29 spheroids (p-value = 0.03), SNAIL1 and Vimentin in Caco-2 spheroids (p-value < 0.05) and N-cadherin down-regulation in both spheroids were observed. Conclusion: Enrichment of CSC-related features in HT-29 and Caco-2 (for the first time without applying special scaffold/biochemical) spheroids, suggests spheroid culture as robust, reproducible, simple and cost-effective model to imitate the complexity of in vivo tumors including self-renewal, drug resistance and invasion for in vitro research of CRC-CSCs. © 2021, The Author(s)
    corecore