17 research outputs found

    Temporal characterization of individual harmonics of an attosecond pulse train by THz streaking

    Full text link
    We report on the global temporal pulse characteristics of individual harmonics in an attosecond pulse train by means of photo-electron streaking in a strong low-frequency transient. The scheme allows direct retrieval of pulse durations and first order chirp of individual harmonics without the need of temporal scanning. The measurements were performed using an intense THz field generated by tilted phase front technique in LiNbO_3 . Pulse properties for harmonics of order 23, 25 and 27 show that the individual pulse durations and linear chirp are decreasing by the harmonic order

    Quantum efficiency of technical metal photocathodes under laser irradiation of various wavelengths

    Get PDF
    Quantum efficiency studies for various laser wavelengths and various technical metal surfaces were carried out in a dedicated unbaked vacuum chamber in the absence of a significant electrical field. Copper, magnesium, aluminum, and aluminum-lithium photocathodes were irradiated by two different high power, high repetition rate, laser systems. We have observed an emission of electrons for photon energies below the work function of the material. This is explained by multiple photon absorption by the photocathode. We have not observed any degradation of the QE for these materials, but an improvement when irradiating them over a long period of time. This is contrary to observations made in RF photogun

    Field-driven femtosecond magnetization dynamics induced by ultrastrong coupling to THz transients

    Full text link
    Controlling ultrafast magnetization dynamics by a femtosecond laser is attracting interest both in fundamental science and industry because of the potential to achieve magnetic domain switching at ever advanced speed. Here we report experiments illustrating the ultrastrong and fully coherent light-matter coupling of a high-field single-cycle THz transient to the magnetization vector in a ferromagnetic thin film. We could visualize magnetization dynamics which occur on a timescale of the THz laser cycle and two orders of magnitude faster than the natural precession response of electrons to an external magnetic field, given by the Larmor frequency. We show that for one particular scattering geometry the strong coherent optical coupling can be described within the framework of a renormalized Landau Lifshitz equation. In addition to fundamentally new insights to ultrafast magnetization dynamics the coherent interaction allows for retrieving the complex time-frequency magnetic properties and points out new opportunities in data storage technology towards significantly higher storage speed.Comment: 25 page

    Towards high brightness electron beams from multifilamentary Nb3Sn wire photocathode

    No full text
    In order to find electron sources of low emittance and high quantum efficiency, single tip cathodes with a microstructured surface are investigated. Emission currents up to 310 A were obtained, by combining a 2 ns, 50 kV accelerating voltage pulse with a 266 nm wavelength, picosecond (sigma(t) = 6.2 ps) laser delivering a few mu J pulse energy. The multifilamentary cylindric Nb3Sn tip with a typical diameter of 0.8 mm provides quantum efficiencies up to 0.5%. The microstructured needle has also been tested in a combined diode-rf electron gun with 500 kV, 250 ns pulsed bias voltage as a first step towards reducing emittance-spoiling space-charge forces

    Large Charge Extraction from Metallic Multifilamentary Nb3Sn Photocathode

    No full text
    The current density limit for photoemission from metals was measured in an rf photogun to be below 10(9) A/m(2). We have achieved 1.6 x 10(11) A/m(2) by photofield emission from a new type of photocathode made from a metallic-composite, multifilamentary Nb3Sn wire driven by a 266 nm picosecond laser pulse and a 2 ns, 50 kV accelerating voltage. This cathode has a micrometer arrayed structure with tens of thousands of Nb/Nb3Sn filaments embedded in a bronze matrix. Our measurements revealed the existence of a new electron emission regime at high laser fluence (100 mJ/cm(2)). We have extracted stably, and without any surface ablation, up to 4800 pC of charge. This corresponds to 0.9% quantum efficiency, 100 times larger than what is measured from conventional metallic photocathodes. The unexpected large and stable charge extraction cannot be explained by the 3-step model. Thanks to the small emitting area, the measured emittance (0.6 mm.mrad) is low in spite of the high current density and space charge effects. This cathode will be of benefit for many applications based on short and bright electron bunches

    Towards high brightness electron beams from multifilamentary Nb_{3}Sn wire photocathode

    No full text
    In order to find electron sources of low emittance and high quantum efficiency, single tip cathodes with a microstructured surface are investigated. Emission currents up to 310 A were obtained, by combining a 2 ns, 50 kV accelerating voltage pulse with a 266 nm wavelength, picosecond (σ_{t}=6.2  ps) laser delivering a few ÎŒJ pulse energy. The multifilamentary cylindric Nb_{3}Sn tip with a typical diameter of 0.8 mm provides quantum efficiencies up to 0.5%. The microstructured needle has also been tested in a combined diode-rf electron gun with 500 kV, 250 ns pulsed bias voltage as a first step towards reducing emittance-spoiling space-charge forces

    Quantum efficiency of technical metal photocathodes under laser irradiation of various wavelengths

    No full text
    Quantum efficiency studies for various laser wavelengths and various technical metal surfaces were carried out in a dedicated unbaked vacuum chamber in the absence of a significant electrical field. Copper, magnesium, aluminum, and aluminum-lithium photocathodes were irradiated by two different high power, high repetition rate, laser systems. We have observed an emission of electrons for photon energies below the work function of the material. This is explained by multiple photon absorption by the photocathode. We have not observed any degradation of the QE for these materials, but an improvement when irradiating them over a long period of time. This is contrary to observations made in RF photoguns

    Spectral characterization of fully phase-matched high harmonics generated in a hollow waveguide for free-electron laser seeding

    No full text
    International audienceWe present a bright and coherent soft x-ray source based on high harmonic generation delivering up to 1010 photons per second centered at 120 eV within an 80 eV bandwidth. The source profits from fully phase-matched harmonic generation in an unmodulated hollow waveguide. Under these conditions, the resulting high harmonic spectrum is shown to be flat-top up to the cutoff photon energy and in line with the theoretical single-atom response. The source is characterized in view of seeding a free-electron laser and is shown to overcome the free-electron laser noise floor for wavelengths as short as 8.9 nm. This opens the perspective toward direct high harmonic seeding of a free-electron laser at soft x-ray wavelengths

    Spectral characterization of fully phase-matched high harmonics generated in a hollow waveguide for free-electron laser seeding

    No full text
    We present a bright and coherent soft x-ray source based on high harmonic generation delivering up to 10(10) photons per second centered at 120 eV within an 80 eV bandwidth. The source profits from fully phase-matched harmonic generation in an unmodulated hollow waveguide. Under these conditions, the resulting high harmonic spectrum is shown to be flat-top up to the cutoff photon energy and in line with the theoretical single-atom response. The source is characterized in view of seeding a free-electron laser and is shown to overcome the free-electron laser noise floor for wavelengths as short as 8.9 nm. This opens the perspective toward direct high harmonic seeding of a free-electron laser at soft x-ray wavelengths
    corecore