282 research outputs found

    Stripes of Partially Fluorinated Alkyl Chains: Dipolar Langmuir Monolayers

    Full text link
    Stripe-like domains of Langmuir monolayers formed by surfactants with partially fluorinated lipid anchors (F-alkyl lipids) are observed at the gas-liquid phase coexistence. The average periodicity of the stripes, measured by fluorescence microscopy, is in the micrometer range, varying between 2 and 8 microns. The observed stripe-like patterns are stabilized due to dipole-dipole interactions between terminal -CF3 groups. These interactions are particularly strong as compared with non-fluorinated lipids due to the low dielectric constant of the surrounding media (air). These long-range dipolar interactions tend to elongate the domains, in contrast to the line tension that tends to minimize the length of the domain boundary. This behavior should be compared with that of the lipid monolayer having alkyl chains, and which form spherical micro-domains (bubbles) at the gas-liquid coexistence. The measured stripe periodicity agrees quantitatively with a theoretical model. Moreover, the reduction in line tension by adding traces (0.1 mol fraction) of cholesterol results, as expected, in a decrease in the domain periodicity.Comment: 20 pages, 4 fig

    Adsorption of polymers on a fluctuating surface

    Full text link
    We study the adsorption of polymer chains on a fluctuating surface. Physical examples are provided by polymer adsorption at the rough interface between two non-miscible liquids, or on a membrane. In a mean-field approach, we find that the self--avoiding chains undergo an adsorption transition, accompanied by a stiffening of the fluctuating surface. In particular, adsorption of polymers on a membrane induces a surface tension and leads to a strong suppression of roughness.Comment: REVTEX, 9 pages, no figure

    Electrostatic Interactions of Asymmetrically Charged Membranes

    Full text link
    We predict the nature (attractive or repulsive) and range (exponentially screened or long-range power law) of the electrostatic interactions of oppositely charged and planar plates as a function of the salt concentration and surface charge densities (whose absolute magnitudes are not necessarily equal). An analytical expression for the crossover between attractive and repulsive pressure is obtained as a function of the salt concentration. This condition reduces to the high-salt limit of Parsegian and Gingell where the interaction is exponentially screened and to the zero salt limit of Lau and Pincus in which the important length scales are the inter-plate separation and the Gouy-Chapman length. In the regime of low salt and high surface charges we predict - for any ratio of the charges on the surfaces - that the attractive pressure is long-ranged as a function of the spacing. The attractive pressure is related to the decrease in counter-ion concentration as the inter-plate distance is decreased. Our theory predicts several scaling regimes with different scaling expressions for the pressure as function of salinity and surface charge densities. The pressure predictions can be related to surface force experiments of oppositely charged surfaces that are prepared by coating one of the mica surfaces with an oppositely charged polyelectrolyte

    Polyelectrolyte Persistence Length: Attractive Effect of Counterion Correlations and Fluctuations

    Full text link
    The persistence length of a single, strongly charged, stiff polyelectrolyte chain is investigated theoretically. Path integral formulation is used to obtain the effective electrostatic interaction between the monomers. We find significant deviations from the classical Odijk, Skolnick and Fixman (OSF) result. An induced attraction between monomers is due to thermal fluctuations and correlations between bound counterions. The electrostatic persistence length is found to be smaller than the OSF value and indicates a possible mechanical instability (collapse) for highly charged polyelectrolytes with multivalent counterions. In addition, we calculate the amount of condensed counterions on a slightly bent polyelectrolyte. More counterions are found to be adsorbed as compared to the Manning condensation on a cylinder.Comment: 5 pages, 1 ps figur

    Fluctuations of a driven membrane in an electrolyte

    Full text link
    We develop a model for a driven cell- or artificial membrane in an electrolyte. The system is kept far from equilibrium by the application of a DC electric field or by concentration gradients, which causes ions to flow through specific ion-conducting units (representing pumps, channels or natural pores). We consider the case of planar geometry and Debye-H\"{u}ckel regime, and obtain the membrane equation of motion within Stokes hydrodynamics. At steady state, the applied field causes an accumulation of charges close to the membrane, which, similarly to the equilibrium case, can be described with renormalized membrane tension and bending modulus. However, as opposed to the equilibrium situation, we find new terms in the membrane equation of motion, which arise specifically in the out-of-equilibrium case. We show that these terms lead in certain conditions to instabilities.Comment: 7 pages, 2 figures. submitted to Europhys. Let

    Statistical mechanics of budget-constrained auctions

    Full text link
    Finding the optimal assignment in budget-constrained auctions is a combinatorial optimization problem with many important applications, a notable example being the sale of advertisement space by search engines (in this context the problem is often referred to as the off-line AdWords problem). Based on the cavity method of statistical mechanics, we introduce a message passing algorithm that is capable of solving efficiently random instances of the problem extracted from a natural distribution, and we derive from its properties the phase diagram of the problem. As the control parameter (average value of the budgets) is varied, we find two phase transitions delimiting a region in which long-range correlations arise.Comment: Minor revisio

    Topography and instability of monolayers near domain boundaries

    Full text link
    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of ``mesas'', where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K(dc)^2 (dc being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about K(dc). The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films.Comment: 17 pages, 9 figures, using RevTeX and epsf, submitted to Phys Rev

    Self-averaging of random and thermally disordered diluted Ising systems

    Full text link
    Self-averaging of singular thermodynamic quantities at criticality for randomly and thermally diluted three dimensional Ising systems has been studied by the Monte Carlo approach. Substantially improved self-averaging is obtained for critically clustered (critically thermally diluted) vacancy distributions in comparison with the observed self-averaging for purely random diluted distributions. Critically thermal dilution, leading to maximum relative self-averaging, corresponds to the case when the characteristic vacancy ordering temperature is made equal to the magnetic critical temperature for the pure 3D Ising systems. For the case of a high ordering temperature, the self-averaging obtained is comparable to that in a randomly diluted system.Comment: 4 pages, 4figures, RevTe

    Nonequilibrium Fluctuations, Travelling Waves, and Instabilities in Active Membranes

    Get PDF
    The stability of a flexible fluid membrane containing a distribution of mobile, active proteins (e.g. proton pumps) is shown to depend on the structure and functional asymmetry of the proteins. A stable active membrane is in a nonequilibrium steady state with height fluctuations whose statistical properties are governed by the protein activity. Disturbances are predicted to travel as waves at sufficiently long wavelength, with speed set by the normal velocity of the pumps. The unstable case involves a spontaneous, pump-driven undulation of the membrane, with clumping of the proteins in regions of high activity.Comment: 4 two-column pages, two .eps figures included, revtex, uses eps

    Dynamics of orientational ordering in fluid membranes

    Get PDF
    We study the dynamics of orientational phase ordering in fluid membranes. Through numerical simulation we find an unusually slow coarsening of topological texture, which is limited by subdiffusive propagation of membrane curvature. The growth of the orientational correlation length ξ\xi obeys a power law ξtw\xi \propto t^w with w<1/4w < 1/4 in the late stage. We also discuss defect profiles and correlation patterns in terms of long-range interaction mediated by curvature elasticity.Comment: 5 pages, 3 figures (1 in color); Eq.(9) correcte
    corecore