106 research outputs found

    Reliability analysis for the quench detection in the LHC machine

    Get PDF
    The Large Hadron Collider (LHC) will incorporate a large amount of superconducting elements that require protection in case of a quench. Key elements in the quench protection system are the electronic quench detectors. Their reliability will have an important impact on the down time as well as on the operational cost of the collider. The expected rates of both false and missed quenches have been computed for several redundant detection schemes. The developed model takes account of the maintainability of the system to optimise the frequency of foreseen checks, and evaluate their influence on the performance of different detection topologies. Seen the uncertainty of the failure rate of the components combined with the LHC tunnel environment, the study has been completed with a sensitivity analysis of the results. The chosen detection scheme and the maintainability strategy for each detector family are given

    Characterization of the radiation tolerance of cryogenic diodes for the High Luminosity LHC inner triplet circuit

    Get PDF
    Cryogenic bypass diodes are part of the baseline powering layout for the circuits of the new Nb3Sn based final focus magnets of the high luminosity Large Hadron Collider. They will protect the magnets against excessive transient voltages during a nonuniform quenching process. The diodes are located inside an extension to the magnet cryostat, operated in superfluid helium and exposed to ionizing radiation. Therefore, the radiation tolerance of different types of diodes has been tested at cryogenic temperatures in CERN’s CHARM irradiation test facility during its 2018 run. The forward bias characteristics, the turn-on voltage and the reverse blocking voltage of each diode were measured weekly at 4.2 K and 77 K, as a function of the accumulated radiation dose. The diodes were submitted to a total dose close to 12 kGy and a 1 MeV neutron equivalent fluence of 2.2×1014  cm−2. After the end of the irradiation program the annealing behavior of the diodes was tested by increasing the temperature slowly to 293 K. This paper describes the experimental setup, the measurement procedure and the analysis of the measurements performed during the irradiation program as well as the results of the annealing study

    Low Energy Analyzing Powers in Pion-Proton Elastic Scattering

    Full text link
    Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.Comment: 15 pages, 4 figure

    First Powering of the LHC Test String 2

    Get PDF
    String 2 is a full-size model of a regular cell in an LHC arc. In the first phase, three dipole magnets and two quadrupole magnets have been assembled in String 2 and commissioning started in April 2001. By the beginning of 2002 three pre-series dipole magnets will be added to complete the cell. As for its predecessor String 1, the facility was built to individually validate the LHC systems and to investigate their collective behaviour for normal operation with the magnets at a temperature of 1.9 K, during transients as well as during exceptional conditions. String 2 is a precious milestone before installation and commissioning of the first LHC sector (1/8 of the machine) in 2004, with respect to infrastructure, installation, tooling and assembly procedures, testing and commissioning of individual systems, as well as the global commissioning of the technical systems. This paper describes the commissioning, and retraces the first powering history

    Experimental Setup to Characterize the Radiation Hardness of Cryogenic Bypass Diodes for the HL-LHC Inner Triplet Circuits

    Get PDF
    For the high luminosity upgrade of the Large Hadron Collider (LHC), it is planned to replace the existing triplet quadrupole magnets with Nb₃Sn quadrupole magnets, which provide a comparable integrated field gradient with a significantly increased aperture. These magnets will be powered through a novel superconducting link based on MgB₂ cables. One option for the powering layout of this triplet circuit is the use of cryogenic bypass diodes, where the diodes are located inside an extension to the magnet cryostat and operated in superfluid helium. Hence, they are exposed to radiation. For this reason the radiation hardness of existing LHC type bypass diodes and more radiation tolerant prototype diodes needs to be tested up to the radiation doses expected at their planned position during their lifetime. A first irradiation test is planned in CERN's CHARM facility starting in spring 2018. Therefore, a cryo-cooler based cryostat to irradiate and test LHC type diodes in-situ has been designed and constructed. This paper will describe the properties of the sample diodes, the experimental roadmap and the setup installed in CHARM. Finally, the first measurement results will be discussed

    Scattering of dipole-mode vector solitons: Theory and experiment

    Full text link
    We study, both theoretically and experimentally, the scattering properties of optical dipole-mode vector solitons - radially asymmetric composite self-trapped optical beams. First, we analyze the soliton collisions in an isotropic two-component model with a saturable nonlinearity and demonstrate that in many cases the scattering dynamics of the dipole-mode solitons allows us to classify them as ``molecules of light'' - extremely robust spatially localized objects which survive a wide range of interactions and display many properties of composite states with a rotational degree of freedom. Next, we study the composite solitons in an anisotropic nonlinear model that describes photorefractive nonlinearities, and also present a number of experimental verifications of our analysis.Comment: 8 pages + 4 pages of figure
    • 

    corecore