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Counterpropagating beams in biased photorefractive crystals: Anisotropic theory
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We formulate an anisotropic nonlocal theory of the space charge field induced by the coherent counterpropa-
gating beams in biased photorefractive crystals. We establish that the competition between the drift and
diffusion terms has to be taken into account when the crystadis is tilted with respect to the propagation
direction of the beams. We demonstrate that this configuration combines the features of both spatial soliton
formation without energy exchange and two-wave mixing with energy exchange leading to pattern formation.
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Coherent interaction of counterpropagatif@P) light 0 for fully incoherent beams This pattern modulates the
beams in Kerr-type and photorefractif@R) media has been space charge field in the crystal and generates a reflection-
treated in a number of papgs-7], using mainly an isotro- type grating in the index of refraction. Our aim is to evaluate
pic and local approximation to the nonlinear response of théhe strength of this grating and its phase shift relative to the
medium. This means that the change in the refractive indexntensity interference pattern, and to investigate its influence
caused by light, is spatially isotropic and depends locally oron the propagation of beams. We expect both the strength
the light intensity. It has been shown, however, that theand the phase to depend on the angleetween the beams’
agreement between theoretical predictions and experimentdlrection of propagation and the crystahxis.
results in PR crystals can be improved by using an aniso- We choose the axis to be parallel to the beams’ direction
tropic nonlocal model for the nonlinearif]. The change in  of propagation. To utilize the largest component of the
the refractive index at one point then depends on the interelectro-optic tensor for soliton formation, the beams’ polar-
sity distribution at other points, and it includes a directionalization is chosen to lie in the plane of tlteaxis and thez
dependence on the applied electric field, which is necessamxis. The external electric field is applied parallel to the
for the screening effect. Still, aexactisotropic local theory axis. Hence, we assume that the beams in the transverse
was formulated only for the one-transverse-dimensi¢h2) plane are localized in the direction and that the space
copropagating beams in PR crystgds. charge field is confined to thez plane (1D geometry. It

Here we formulate an anisotropic nonlocal theory of thepresents no difficulty to extend our results to two transverse
space charge field induced by the coherent counterpropagatimensions. Figure 1 depicts the geometry of the problem.
ing beams in biased PR crystals. We show that the aniso- For incoherent beam&=0) the space charge field con-
tropic nonlocal theory yields significantly different results sists only of a homogeneous componeBi{r)=Eq(r),
from the isotropic local model, especially when the crystal wherer =xx+zz, andx andz are the unit vectors. For coher-
axis is tilted with respect to the direction of propagation ofent beams the interference pattern induces an additional
the beams. We demonstrate that a more complete descriptignodulation of the electric potentigi generated by the sepa-
of counterpropagating beams requires inclusion of both theated space charges in the medium, proportional: to
drift and diffusion terms.

We assume that the optical electric field is given as the d(r) = ¢o(r) + (e/2)[ p.(r)expi2kz) + c.c). (2)
sum of slowly varying amplitude& exp(ikz) +B exp(-ikz)
+c.c.,k being the wave vector in the crystal, aRdindB the ~ Here the fast and slow oscillations in tlredirection are
envelopes of the beams counterpropagating along thés.  separated in the leading order, by introducing the slowly
The light intensity, after averaging in time, builds an inter-varying envelope ¢, of the potential, with |d,¢.(r)|
ference pattern of the form < 2K|¢.(r)|. The potentiakp generates the space charge field,

_ . . which also consists of a modulated and an unmodulated part:
I =lo+e[FB exp(2ikz) +c.c], @ Es=Eo+E.[exp(i2kz)+c.c]. Thus we haveEy,=V ¢, and
wherel,=|F|?+|B|? is the homogeneous light intensity and  E,=XE,+2&,=Xdyd, +zekip,, whereV=xd,+2d,.
is the degree of beam coherenee=1 for fully coherent and The charge distribution inside a PR crystal is modeled by
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steady state, i.e., when settingh,=0, one obtains the well-
z known result

Eo=—X[Ello+ rddol/(1 +1). 5

X Note that we have chosen the coordinate system such that the
z direction is always parallel to the direction of propagation
of the beams. Hendg,, is parallel to thex direction, because

variations of the light intensity in the direction are small

a and hence both drift and diffusion terms in thelirection
can be neglected. Under normal experimental conditions
<0.05¢|E¢, where x,=10 um is the beam size, which
means tha€, is well approximated byE,=-xExlo/(1+1y),
i.e., for room temperature ang=0 diffusion of the charge
carriers plays only a minor role. Hence, in that cadecal
isotropic solution to the space charge field is obtained. How-

ever, it has been shown that the teraily/(1+13), which
causes self-bending of the beams, can be of crucial impor-
tance for counterpropagating beanft?], particularly for
longer propagation lengths, if<5°.

In the case of mutually coherent CP beams, iee>,0,
substituting expressio(®) into Eqg. (3), separating the slow
and fast oscillating parts, and keeping the terms up to the

Backward

Forward
beam

I first order ing, one finds tha€, is again given by Eq(3),
| I and that¢, solves
(52 = AP h,) + (L +1)Mhg/2 + (1 +1¢)
FIG. 1. Geometry of beam propagation in a tilted biased photo- X(Rb.]2 — K2 + (1L +1)m/210u b + 9l nd)
refractive crystal. ( x¢+ ¢+) x[( 0) ] xd’O x!'0 x¢+
=Exd[ (1 +1g)m] +iKEL(1 +1g)m
the Kukhtarev equationgl0O]. These equations can be re- - k(L +1g)m)/4 - 231 +lo)my, (6)

duced to the following potential equation: .
wherem=2FB"/(1+lg) is the modulation depth. This fairly

complicated equation can be simplified by noticing that it
Lat(VZ(;S) +V2¢+ VIn(1+)V ¢ P q P y g

1+1, contains terms of different orders of magnitude. On the one
) hand there are the terms proportionakte 47/\2, wherex

_ _keT 2 is the wavelength in the medium, typically around 200 nm.
=Ee- VIn(1+1) q {VEIn(@+1) +[V In(@ + I, On the other hand there are the terms contairingderiva-

3) tives. Sinceg, I.O, andmvary in th_ex direction on theilength
scale of the size of the beam, i.e., &6n, their partial de-

using a few well-justified approximatiori41]. Here 7 is the rivatives can be neglected. Therefore, only the terms propor-
relaxation time of the crystaE, is the external biasing field, tional tok? and the termkE(1+lp)m need to be taken into
kg is the Boltzmann constant, is the temperature, amglis ~ account. Thus we get
the elementary charge. The background illumination, also, 2 2 — _ o2 =
necessary for }c/he forr%]ation of spat?al solitons, is now added2k Tipe + 2L +lo) by = = 2KCk(L +loJm = IKE[L +loJm.
to the total light intensity. (7

In the cases=0 the potential can be calculated just as inTphe steady state solution i, =—[ x-+iEZ/(2k)]m; hence
the well-known case of incoherent copropagating light N '

beams. Substituting Eq2) into Eq. (3) and settinge=0 Ex=—[k+iEY(2Kk)]om (8)
yields
and
T+ (1 +10) Feho + oyl oddbo = Esdlo = kglo,  (4) &,= - e(ikc - EY2)m. (9)

where Ef is the x component ofE, and k=kgT/q is the  Even for the values oEZ as high as several kV/cnkg« is
diffusion potential. Here we have neglected the derivativebigger thanEZ, which means that the modulated part of the
of ¢y andly with respect taz, because the beams typically field in thez direction,&,, is diffusion dominated.

used in experimental setups have a diameter of abowm0 With Egs.(5), (8), and(9) we have a closed set of equa-
i.e., ¢p and |y vary in thex direction on a length scale of tions that gives us the space charge field inside the crystal to
10 um, whereas in the direction they vary on the length a good approximation. It remains to find out how the space
scale of the diffraction lengtip~2 mm. Therefore, in charge field changes the refractive index and thus influences
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the propagation of beams. The fact that ifhérefringeny T T

crystal is tilted with respect to the direction of propagation of 0.005 | 1
the beams has to be taken into account. Linear optics gives =

I~ 0

S

us the effective refractive index of the crystal:

2 2 _ 4 ~0.005
2. = N33Myy ~ Nig (10) 0.00
o n2,sin? a+n2, cod o+ 2n,sina cosa’ @ S

Whereso{nﬁ} is the dielectric tensomns; is the index of re-

fraction for the beams polarized parallel to the crystakis 0.005 | 1

andny, is the index for the beams polarized perpendicular to C\g 0

C. a, as mentioned above, is the angle by which the crystal is S

tilted with respect to the direction of propagation of the -0.005 -

beams(see Fig. 1L To show how the modulated and un-

modulated parts of the space charge field influemgewe

take the SBN:75 crystal as an example. The generalization to

other photorefractive crystals is straightforward. 0.005 + .
In SBN:75 the refractive index can be influenced by the o~ —

three components of the electro-optic tensorzs ,g 0

=1340 pm/V,r13=67 pm/V, andr,,=42 pm/V. The values ~0.005

are taken from Ref.10] and are valid for the light of vacuum

wavelength 633 nm. Let us now decompose the nonlinear (c) S

refractive index changén? into a modulated and unmodu- L L L

lated part: on?=on3+onZ[exp(2ikz) +exp(—2ikz)]/2. The 0.005

space charge field influences the refractive index as follows:

(b) I I I I I I I

T
S 0

-0.005 |

2_ ~4 ~4
Ny = Eq - X[(r3dNza833+ 137,811 COSa

~2 ~2 .
= N3Ny sinal,

20 —10 0 10 20
() x[pm]

NG = (£ Cosa + &, Sin @) ( adisadgs + I111811)
; =2 =2
* (&csina+ &, COSAuNag A, (19 FIG. 2. Unmodulated pardnj of the refractive index change.
where &offi;} is the unperturbed dielectric tensas; — Gaussian beamB=B=ex{-x*/(207)] with o=5 um are chosen
:mﬁﬁ/anﬁ, andE, is given by Eq.(5). as the beam profiles. The crystal is tilted &y 0° in (a), 10° in (b),
The propagation equations of the beam envelopes in th#5° in (c), and 90° in(d). E.=3 kV/cm.
paraxial approximation are then given by
1 1 strongest fora=0°, as should be expected. This configura-
- Lo _ g2 T2 tion is typically employed in the investigations of spatial
|0+ 2F72XF = ook + ZéhmB’ solitons. Fora=90°, which is the standard configuration for
experiments on pattern formation, it almost vanishes, owing
. 1 S to the small value of ,,.
—id,B+ 5(753: ongB + E(mm) F, (12) Using Eqgs.(8), (9), and(11) leads to the modulated part
on?, of the refractive index change shown in Fig. 3. It can be
where we have neglected the terms proportionalde/da  seen that the imaginary part is dominant for tilted crystals
andaéhﬁqlaa, as they only result in weak self-bending of the (by a factor of about 10 i.e., the symmetry between the
beams, which is an effect already taken into account by théorward and the backward beams is broken. Furthermore,
second term in E((5). éhﬁq is the strongest at some intermediate valueroThere-

It is important to distinguish between the real and imagi-fore, in experiments where a strong transfer of energy from
nary parts oféhﬁv because of the fact that when the Braggone beam to the other is desired, it might be useful to tilt the
grating inside the crystal is/2 phase shifted with respect to crystal by a=45°.
the intensity grating, the backward beam gets stronger as it To confirm observations concerning the dependence of
travels through the crystal, while the forward beam gets desnZ on «, we plot in Fig. 4 the amplitude and the phase of
pleted. In other words, the imaginary part&)fﬁ] breaks the %atxzo, as functions ofv. It can be seen that the ampli-
z— -z symmetry between the forward and the backwardtude is the biggest for the value at~45°, and that even for
propagating beams and induces energy transfer betweeamall angles the phase is close62. This means that the

them. energy transfer from one beam to the other has to be taken
In Fig. 2 we show the unmodulated pari of the refrac-  into account.
tive index change for crystals tilted at different angles Thus, we can state that the counterpropagation of coher-

calculated using Eqg$5) and(11). It can be seen that it is the ent beams in biased photorefractive crystals combines the
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FIG. 3. Modulated partn, of the refractive index change. The
left column shows the real part, the right column the imaginary part. ~ 027
All parameters are as in Fig. 2. 0.15 |
features of both soliton formation without energy exchange 01 r
and two-wave mixing in photorefractive media, namely, self- 0.05 |
focusing by the unmodulated pa?rhg of the refractive index 0 . AN .
change and energy exchange by the modulated part, which is 40 30 -20 -10 O 10 20 30 40
~/2 phase shifted with respect to the modulation of the (@) [pm]

light intensity.

To see whether the combination of these features leads to ) ) X
dal. The crystal is assumed to be tilted &y 10° with respect to the

a propagation behavior that is a mixture of self-focusing an

pattern formation, we simulated the counterpropagation o

two beams with initial profilesF=B=0.3 exp—x?/(202)]
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FIG. 4. Amplitude and phase ofb’nrzn at x=0. The upper plot
shows the amplitude; the lower plot shows the phasdefined by
e=arctafilm{on3(x=0)}/Re{onZ(x=0)}].

FIG. 5. Counterpropagation of two beams in a 1 mm long crys-

ropagation direction(@) shows the evolution of the forward beam
propagating from bottom to t9p(b) shows the backward beam
(propagating in the opposite directjoric) shows the profile of the
forward beam as it leaves the crystal.(t) the dashed line shows
the backward beam leaving the crystal aftierear propagation,
whereas the solid line shows it after nonlinear propagation.

with o=4 pm. We assumed an angle=10° and an external
voltage ofE,=3 kV/cm. We considered a 1 mm thin slice of
an SBN:75 crystal. The result of the simulation is presented
in Fig. 5. Figures &) and 3b) show how the profiles of the
beams change as they propagégshows the forward beam
and (b) the backward beam, with their direction of propaga-
tion being indicated by arrows on the side of the plots. Fig-
ure 5c) shows the profile of the forward beam as it leaves
the crystal. It has split into three beams, reminiscent of the
breaking of a uniform beam into stripes in experiments on
pattern formation in counterpropagating beams. Finally, the
solid line in Fig. §d) shows the backward beam as it leaves
the crystal. For comparison, the dashed line shows what the
beam would look like were the nonlinearity absent. One can
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see that on the one hand the backward beam gets amplifiédfluence on the propagation of beams. The strength of the
while propagating through the crystal; on the other hand therating strongly depends on the angle by which the crystal is
self-focusing effect of the nonlinearity is also clearly visible. tilted, whereas its phase is always closentt?, except for

For this simulation we sef=300 K. The effect of the self- very small angles. As a consequence, the tilted biased pho-
bending is weak due to the short propagation distance. Howprefractive crystal can exhibit a combination of features
ever, its effects are clearly visible in the asymmetry of theconnected with soliton formation on the one hand and with

beam profile in Fig. &). _ pattern formation on the other hand.
In conclusion, we have found that the counterpropagation

of light beams in biased crystals tilted with respect to the The authors appreciate enlightening discussions with S.
propagation direction of the beams induces a Bragg gratin@doulov and C. Rotschild. M.B. and A.D. acknowledge sup-
in the refractive index of the crystal, which produces a strongport from the Humboldt Foundation.
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