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We formulate an anisotropic nonlocal theory of the space charge field induced by the coherent counterpropa-
gating beams in biased photorefractive crystals. We establish that the competition between the drift and
diffusion terms has to be taken into account when the crystalĉ axis is tilted with respect to the propagation
direction of the beams. We demonstrate that this configuration combines the features of both spatial soliton
formation without energy exchange and two-wave mixing with energy exchange leading to pattern formation.
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Coherent interaction of counterpropagatingsCPd light
beams in Kerr-type and photorefractivesPRd media has been
treated in a number of papersf1–7g, using mainly an isotro-
pic and local approximation to the nonlinear response of the
medium. This means that the change in the refractive index,
caused by light, is spatially isotropic and depends locally on
the light intensity. It has been shown, however, that the
agreement between theoretical predictions and experimental
results in PR crystals can be improved by using an aniso-
tropic nonlocal model for the nonlinearityf8g. The change in
the refractive index at one point then depends on the inten-
sity distribution at other points, and it includes a directional
dependence on the applied electric field, which is necessary
for the screening effect. Still, anexactisotropic local theory
was formulated only for the one-transverse-dimensionals1Dd
copropagating beams in PR crystalsf9g.

Here we formulate an anisotropic nonlocal theory of the
space charge field induced by the coherent counterpropagat-
ing beams in biased PR crystals. We show that the aniso-
tropic nonlocal theory yields significantly different results
from the isotropic local model, especially when the crystalĉ
axis is tilted with respect to the direction of propagation of
the beams. We demonstrate that a more complete description
of counterpropagating beams requires inclusion of both the
drift and diffusion terms.

We assume that the optical electric field is given as the
sum of slowly varying amplitudesF expsikzd+B exps−ikzd
+c.c.,k being the wave vector in the crystal, andF andB the
envelopes of the beams counterpropagating along thez axis.
The light intensity, after averaging in time, builds an inter-
ference pattern of the form

I = I0 + «fFB* exps2ikzd + c.c.g, s1d

whereI0= uFu2+ uBu2 is the homogeneous light intensity and«
is the degree of beam coherences«=1 for fully coherent and

0 for fully incoherent beamsd. This pattern modulates the
space charge field in the crystal and generates a reflection-
type grating in the index of refraction. Our aim is to evaluate
the strength of this grating and its phase shift relative to the
intensity interference pattern, and to investigate its influence
on the propagation of beams. We expect both the strength
and the phase to depend on the anglea between the beams’
direction of propagation and the crystalĉ axis.

We choose thez axis to be parallel to the beams’ direction
of propagation. To utilize the largest component of the
electro-optic tensor for soliton formation, the beams’ polar-
ization is chosen to lie in the plane of theĉ axis and thez
axis. The external electric field is applied parallel to theĉ
axis. Hence, we assume that the beams in the transverse
plane are localized in thex direction and that the space
charge field is confined to thex-z plane s1D geometryd. It
presents no difficulty to extend our results to two transverse
dimensions. Figure 1 depicts the geometry of the problem.

For incoherent beamss«=0d the space charge field con-
sists only of a homogeneous componentEscsr d=E0sr d,
wherer =xx+zz, andx andz are the unit vectors. For coher-
ent beams the interference pattern induces an additional
modulation of the electric potentialf generated by the sepa-
rated space charges in the medium, proportional to«:

fsr d = f0sr d + s«/2dff+sr dexpsi2kzd + c.c.g. s2d

Here the fast and slow oscillations in thez direction are
separated in the leading order, by introducing the slowly
varying envelope f+ of the potential, with u]zf+sr du
!2kuf+sr du. The potentialf generates the space charge field,
which also consists of a modulated and an unmodulated part:
Esc=E0+E+fexpsi2kzd+c.c.g. Thus we haveE0= =f0 and
E+=xEx+zEz=x]xf++z«kif+, where==x]x+z]z.

The charge distribution inside a PR crystal is modeled by
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the Kukhtarev equationsf10g. These equations can be re-
duced to the following potential equation:

t

1 + I0
]ts¹2fd + ¹2f + = lns1 + Id = f

= Ee · = lns1 + Id −
kBT

q
h¹2 lns1 + Id + f= lns1 + Idg2j,

s3d

using a few well-justified approximationsf11g. Heret is the
relaxation time of the crystal,Ee is the external biasing field,
kB is the Boltzmann constant,T is the temperature, andq is
the elementary charge. The background illumination, also
necessary for the formation of spatial solitons, is now added
to the total light intensity.

In the case«=0 the potential can be calculated just as in
the well-known case of incoherent copropagating light
beams. Substituting Eq.s2d into Eq. s3d and setting«=0
yields

t]t]x
2f0 + s1 + I0d]x

2f0 + ]xI0]xf0 = Ee
x]xI0 − k]x

2I0, s4d

where Ee
x is the x component ofEe and k=kBT/q is the

diffusion potential. Here we have neglected the derivatives
of f0 and I0 with respect toz, because the beams typically
used in experimental setups have a diameter of about 10mm,
i.e., f0 and I0 vary in thex direction on a length scale of
10 mm, whereas in thez direction they vary on the length
scale of the diffraction lengthLD<2 mm. Therefore, in

steady state, i.e., when setting]tf0=0, one obtains the well-
known result

E0 = − xfEe
xI0 + k]xI0g/s1 + I0d. s5d

Note that we have chosen the coordinate system such that the
z direction is always parallel to the direction of propagation
of the beams. HenceE0 is parallel to thex direction, because
variations of the light intensity in thez direction are small
and hence both drift and diffusion terms in thez direction
can be neglected. Under normal experimental conditionsk
,0.05x0uEeu, where x0=10 mm is the beam size, which
means thatE0 is well approximated byE0=−xEe

xI0/ s1+I0d,
i.e., for room temperature and«=0 diffusion of the charge
carriers plays only a minor role. Hence, in that case alocal
isotropicsolution to the space charge field is obtained. How-
ever, it has been shown that the termk]xI0/ s1+I0d, which
causes self-bending of the beams, can be of crucial impor-
tance for counterpropagating beamsf12g, particularly for
longer propagation lengths, ifaø5°.

In the case of mutually coherent CP beams, i.e.,«.0,
substituting expressions2d into Eq. s3d, separating the slow
and fast oscillating parts, and keeping the terms up to the
first order in«, one finds thatE0 is again given by Eq.s3d,
and thatf+ solves

t]ts]x
2f+/2 − 2k2f+d + s1 + I0dm]x

2f0/2 + s1 + I0d

3s]x
2f+/2 − 2k2f+d + ]xfs1 + I0dm/2g]xf0 + ]xI0]xf+

= Ee
x]xfs1 + I0dmg + ikEe

zs1 + I0dm

− kh]x
2fs1 + I0dmg/4 − 2k2s1 + I0dmj, s6d

wherem=2FB* / s1+I0d is the modulation depth. This fairly
complicated equation can be simplified by noticing that it
contains terms of different orders of magnitude. On the one
hand there are the terms proportional tok2=4p /l2, wherel
is the wavelength in the medium, typically around 200 nm.
On the other hand there are the terms containing]x deriva-
tives. Sincef, I0, andm vary in thex direction on the length
scale of the size of the beam, i.e., 10mm, their partial de-
rivatives can be neglected. Therefore, only the terms propor-
tional to k2 and the termikEe

zs1+I0dm need to be taken into
account. Thus we get

2k2t]tf+ + 2k2s1 + I0df+ = − 2k2ks1 + I0dm− ikEe
zs1 + I0dm.

s7d

The steady state solution isf+=−fk+ iEe
z/ s2kdgm; hence

Ex = − fk + iEe
z/s2kdg]xm s8d

and

Ez = − «sikk − Ee
z/2dm. s9d

Even for the values ofEe
z as high as several kV/cm,kk is

bigger thanEe
z, which means that the modulated part of the

field in thez direction,Ez, is diffusion dominated.
With Eqs.s5d, s8d, ands9d we have a closed set of equa-

tions that gives us the space charge field inside the crystal to
a good approximation. It remains to find out how the space
charge field changes the refractive index and thus influences

FIG. 1. Geometry of beam propagation in a tilted biased photo-
refractive crystal.
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the propagation of beams. The fact that thesbirefringentd
crystal is tilted with respect to the direction of propagation of
the beams has to be taken into account. Linear optics gives
us the effective refractive index of the crystal:

neff
2 =

n33
2 n11

2 − n13
4

n33
2 sin2 a + n11

2 cos2 a + 2n13
2 sina cosa

, s10d

where«0hnij
2j is the dielectric tensor.n33 is the index of re-

fraction for the beams polarized parallel to the crystalĉ axis
andn11 is the index for the beams polarized perpendicular to
ĉ. a, as mentioned above, is the angle by which the crystal is
tilted with respect to the direction of propagation of the
beamsssee Fig. 1d. To show how the modulated and un-
modulated parts of the space charge field influenceneff we
take the SBN:75 crystal as an example. The generalization to
other photorefractive crystals is straightforward.

In SBN:75 the refractive index can be influenced by the
three components of the electro-optic tensor:r33
=1340 pm/V,r13=67 pm/V, andr42=42 pm/V. The values
are taken from Ref.f10g and are valid for the light of vacuum
wavelength 633 nm. Let us now decompose the nonlinear
refractive index changedn2 into a modulated and unmodu-
lated part: dn2=dn0

2+dnm
2 fexps2ikzd+exps−2ikzdg /2. The

space charge field influences the refractive index as follows:

dn0
2 = E0 ·xfsr33ñ33

4 a33 + r13ñ11
4 a11dcosa

− r42ñ33
2 ñ11

2 a13 sinag,

dnm
2 = sEx cosa + Ez sinadsr33ñ33

4 a33 + r13ñ11
4 a11d

+ sEx sina + Ez cosadr42ñ33
2 ñ11

2 a13, s11d

where «0hñijj is the unperturbed dielectric tensoraij

=]neff
2 /]nij

2, andE0 is given by Eq.s5d.
The propagation equations of the beam envelopes in the

paraxial approximation are then given by

i]zF +
1

2
]x

2F = dn0
2F +

1

2
dnm

2 B,

− i]zB +
1

2
]x

2B = dn0
2B +

1

2
sdnm

2 d*F, s12d

where we have neglected the terms proportional to]dn0
2/]a

and]dnm
2 /]a, as they only result in weak self-bending of the

beams, which is an effect already taken into account by the
second term in Eq.s5d.

It is important to distinguish between the real and imagi-
nary parts ofdnm

2 , because of the fact that when the Bragg
grating inside the crystal isp /2 phase shifted with respect to
the intensity grating, the backward beam gets stronger as it
travels through the crystal, while the forward beam gets de-
pleted. In other words, the imaginary part ofdnm

2 breaks the
z→−z symmetry between the forward and the backward
propagating beams and induces energy transfer between
them.

In Fig. 2 we show the unmodulated partdn0
2 of the refrac-

tive index change for crystals tilted at different anglesa,
calculated using Eqs.s5d ands11d. It can be seen that it is the

strongest fora=0°, as should be expected. This configura-
tion is typically employed in the investigations of spatial
solitons. Fora=90°, which is the standard configuration for
experiments on pattern formation, it almost vanishes, owing
to the small value ofr42.

Using Eqs.s8d, s9d, and s11d leads to the modulated part
dnm

2 of the refractive index change shown in Fig. 3. It can be
seen that the imaginary part is dominant for tilted crystals
sby a factor of about 10d, i.e., the symmetry between the
forward and the backward beams is broken. Furthermore,
dnm

2 is the strongest at some intermediate value ofa. There-
fore, in experiments where a strong transfer of energy from
one beam to the other is desired, it might be useful to tilt the
crystal bya<45°.

To confirm observations concerning the dependence of
dnm

2 on a, we plot in Fig. 4 the amplitude and the phase of
dnm

2 at x=0, as functions ofa. It can be seen that the ampli-
tude is the biggest for the value ofa<45°, and that even for
small angles the phase is close top /2. This means that the
energy transfer from one beam to the other has to be taken
into account.

Thus, we can state that the counterpropagation of coher-
ent beams in biased photorefractive crystals combines the

FIG. 2. Unmodulated partdn0
2 of the refractive index change.

Gaussian beamsF=B=expf−x2/ s2s2dg with s=5 mm are chosen
as the beam profiles. The crystal is tilted bya=0° in sad, 10° in sbd,
45° in scd, and 90° insdd. Ee=3 kV/cm.
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features of both soliton formation without energy exchange
and two-wave mixing in photorefractive media, namely, self-
focusing by the unmodulated partdn0

2 of the refractive index
change and energy exchange by the modulated part, which is
,p /2 phase shifted with respect to the modulation of the
light intensity.

To see whether the combination of these features leads to
a propagation behavior that is a mixture of self-focusing and
pattern formation, we simulated the counterpropagation of
two beams with initial profilesF=B=0.3 expf−x2/ s2s2dg

with s=4 mm. We assumed an anglea=10° and an external
voltage ofEe=3 kV/cm. We considered a 1 mm thin slice of
an SBN:75 crystal. The result of the simulation is presented
in Fig. 5. Figures 5sad and 5sbd show how the profiles of the
beams change as they propagate.sad shows the forward beam
andsbd the backward beam, with their direction of propaga-
tion being indicated by arrows on the side of the plots. Fig-
ure 5scd shows the profile of the forward beam as it leaves
the crystal. It has split into three beams, reminiscent of the
breaking of a uniform beam into stripes in experiments on
pattern formation in counterpropagating beams. Finally, the
solid line in Fig. 5sdd shows the backward beam as it leaves
the crystal. For comparison, the dashed line shows what the
beam would look like were the nonlinearity absent. One can

FIG. 3. Modulated partdnm
2 of the refractive index change. The

left column shows the real part, the right column the imaginary part.
All parameters are as in Fig. 2.

FIG. 4. Amplitude and phase ofdnm
2 at x=0. The upper plot

shows the amplitude; the lower plot shows the phasew, defined by
w=arctanfImhdnm

2 sx=0dj /Rehdnm
2 sx=0djg.

FIG. 5. Counterpropagation of two beams in a 1 mm long crys-
tal. The crystal is assumed to be tilted bya=10° with respect to the
propagation direction.sad shows the evolution of the forward beam
spropagating from bottom to topd; sbd shows the backward beam
spropagating in the opposite directiond. scd shows the profile of the
forward beam as it leaves the crystal. Insdd the dashed line shows
the backward beam leaving the crystal afterlinear propagation,
whereas the solid line shows it after nonlinear propagation.
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see that on the one hand the backward beam gets amplified
while propagating through the crystal; on the other hand the
self-focusing effect of the nonlinearity is also clearly visible.
For this simulation we setT=300 K. The effect of the self-
bending is weak due to the short propagation distance. How-
ever, its effects are clearly visible in the asymmetry of the
beam profile in Fig. 5scd.

In conclusion, we have found that the counterpropagation
of light beams in biased crystals tilted with respect to the
propagation direction of the beams induces a Bragg grating
in the refractive index of the crystal, which produces a strong

influence on the propagation of beams. The strength of the
grating strongly depends on the angle by which the crystal is
tilted, whereas its phase is always close top /2, except for
very small angles. As a consequence, the tilted biased pho-
torefractive crystal can exhibit a combination of features
connected with soliton formation on the one hand and with
pattern formation on the other hand.

The authors appreciate enlightening discussions with S.
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