385 research outputs found

    Metrication study for large space telescope

    Get PDF
    Various approaches which could be taken in developing a metric-system design for the Large Space Telescope, considering potential penalties on development cost and time, commonality with other satellite programs, and contribution to national goals for conversion to the metric system of units were investigated. Information on the problems, potential approaches, and impacts of metrication was collected from published reports on previous aerospace-industry metrication-impact studies and through numerous telephone interviews. The recommended approach to LST metrication formulated in this study cells for new components and subsystems to be designed in metric-module dimensions, but U.S. customary practice is allowed where U.S. metric standards and metric components are not available or would be unsuitable. Electrical/electronic-system design, which is presently largely metric, is considered exempt from futher metrication. An important guideline is that metric design and fabrication should in no way compromise the effectiveness of the LST equipment

    Study on joint thermal conductance in vacuum Final report

    Get PDF
    Bright leveling copper plating for improvement of thermal conductance in mechanical joints in vacuu

    Study to determine experimentally the feasibility of new methods for improving thermal conductance of mechanical joints in a vacuum Summary research report, 8 Apr. - 30 Sep. 1966

    Get PDF
    Surface-plateauing techniques, and flexible surface membranes for improved thermal conductance of mechanical joints in vacuu

    Fisher zeros of the Q-state Potts model in the complex temperature plane for nonzero external magnetic field

    Full text link
    The microcanonical transfer matrix is used to study the distribution of the Fisher zeros of the Q>2Q>2 Potts models in the complex temperature plane with nonzero external magnetic field HqH_q. Unlike the Ising model for Hq0H_q\ne0 which has only a non-physical critical point (the Fisher edge singularity), the Q>2Q>2 Potts models have physical critical points for Hq<0H_q<0 as well as the Fisher edge singularities for Hq>0H_q>0. For Hq<0H_q<0 the cross-over of the Fisher zeros of the QQ-state Potts model into those of the (Q1Q-1)-state Potts model is discussed, and the critical line of the three-state Potts ferromagnet is determined. For Hq>0H_q>0 we investigate the edge singularity for finite lattices and compare our results with high-field, low-temperature series expansion of Enting. For 3Q63\le Q\le6 we find that the specific heat, magnetization, susceptibility, and the density of zeros diverge at the Fisher edge singularity with exponents αe\alpha_e, βe\beta_e, and γe\gamma_e which satisfy the scaling law αe+2βe+γe=2\alpha_e+2\beta_e+\gamma_e=2.Comment: 24 pages, 7 figures, RevTeX, submitted to Physical Review

    Topological Landau-Ginzburg Theory for Vortices in Superfluid 4^4He

    Full text link
    We propose a new Landau-Ginzburg theory for arbitrarily shaped vortex strings in superfluid 4^4He. The theory contains a topological term and directly describes vortex dynamics. We introduce gauge fields in order to remove singularities from the Landau-Ginzburg order parameter of the superfluid, so that two kinds of gauge symmetries appear, making the continuity equation and conservation of the total vorticity manifest. The topological term gives rise to the Berry phase term in the vortex mechanical actions.Comment: LATEX, 9 page

    Critical Exponent for the Density of Percolating Flux

    Full text link
    This paper is a study of some of the critical properties of a simple model for flux. The model is motivated by gauge theory and is equivalent to the Ising model in three dimensions. The phase with condensed flux is studied. This is the ordered phase of the Ising model and the high temperature, deconfined phase of the gauge theory. The flux picture will be used in this phase. Near the transition, the density is low enough so that flux variables remain useful. There is a finite density of finite flux clusters on both sides of the phase transition. In the deconfined phase, there is also an infinite, percolating network of flux with a density that vanishes as TTc+T \rightarrow T_{c}^{+}. On both sides of the critical point, the nonanalyticity in the total flux density is characterized by the exponent (1α)(1-\alpha). The main result of this paper is a calculation of the critical exponent for the percolating network. The exponent for the density of the percolating cluster is ζ=(1α)(φ1) \zeta = (1-\alpha) - (\varphi-1). The specific heat exponent α\alpha and the crossover exponent φ\varphi can be computed in the ϵ\epsilon-expansion. Since ζ<(1α)\zeta < (1-\alpha), the variation in the separate densities is much more rapid than that of the total. Flux is moving from the infinite cluster to the finite clusters much more rapidly than the total density is decreasing.Comment: 20 pages, no figures, Latex/Revtex 3, UCD-93-2

    Finite-size behaviour of the microcanonical specific heat

    Full text link
    For models which exhibit a continuous phase transition in the thermodynamic limit a numerical study of small systems reveals a non-monotonic behaviour of the microcanonical specific heat as a function of the system size. This is in contrast to a treatment in the canonical ensemble where the maximum of the specific heat increases monotonically with the size of the system. A phenomenological theory is developed which permits to describe this peculiar behaviour of the microcanonical specific heat and allows in principle the determination of microcanonical critical exponents.Comment: 15 pages, 7 figures, submitted to J. Phys.

    A Cryogenic Underground Observatory for Rare Events: Cuore, an Update

    Get PDF
    CUORE is a proposed tightly packed array of 1000 TeO_{2} bolometers, each being a cube 5 cm on a side with a mass of 750 gms. The array consists of 25 vertical towers, arranged in a square, of 5 towers by 5 towers, each containing 10 layers of 4 crystals. The design of the detector is optimized for ultralow- background searches for neutrinoless double beta decay of ^{130}Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary experiment involving 20 crystals of various sizes (MIBETA) has been completed, and a single CUORE tower is being constructed as a smaller scale experiment called CUORICINO. The expected performance and sensitivity, based on Monte Carlo simulations and extrapolations of present results, are reported.Comment: in press: Nucl. Phys. of Russian Academy of Sc

    Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q

    Full text link
    The Q-state Potts model can be extended to noninteger and even complex Q in the FK representation. In the FK representation the partition function,Z(Q,a), is a polynomial in Q and v=a-1(a=e^-T) and the coefficients of this polynomial,Phi(b,c), are the number of graphs on the lattice consisting of b bonds and c connected clusters. We introduce the random-cluster transfer matrix to compute Phi exactly on finite square lattices. Given the FK representation of the partition function we begin by studying the critical Potts model Z_{CP}=Z(Q,a_c), where a_c=1+sqrt{Q}. We find a set of zeros in the complex w=sqrt{Q} plane that map to the Beraha numbers for real positive Q. We also identify tilde{Q}_c(L), the value of Q for a lattice of width L above which the locus of zeros in the complex p=v/sqrt{Q} plane lies on the unit circle. We find that 1/tilde{Q}_c->0 as 1/L->0. We then study zeros of the AF Potts model in the complex Q plane and determine Q_c(a), the largest value of Q for a fixed value of a below which there is AF order. We find excellent agreement with Q_c=(1-a)(a+3). We also investigate the locus of zeros of the FM Potts model in the complex Q plane and confirm that Q_c=(a-1)^2. We show that the edge singularity in the complex Q plane approaches Q_c as Q_c(L)~Q_c+AL^-y_q, and determine the scaling exponent y_q. Finally, by finite size scaling of the Fisher zeros near the AF critical point we determine the thermal exponent y_t as a function of Q in the range 2<Q<3. We find that y_t is a smooth function of Q and is well fit by y_t=(1+Au+Bu^2)/(C+Du) where u=u(Q). For Q=3 we find y_t~0.6; however if we include lattices up to L=12 we find y_t~0.50.Comment: to appear in Physical Review
    corecore