24,036 research outputs found
Hydrodynamics of the Oscillating Wave Surge Converter in the open ocean
A potential flow model is derived for a large flap-type oscillating wave
energy converter in the open ocean. Application of the Green's integral theorem
in the fluid domain yields a hypersingular integral equation for the jump in
potential across the flap. Solution is found via a series expansion in terms of
the Chebyshev polynomials of the second kind and even order. Several
relationships are then derived between the hydrodynamic parameters of the
system. Comparison is made between the behaviour of the converter in the open
ocean and in a channel. The degree of accuracy of wave tank experiments aiming
at reproducing the performance of the device in the open ocean is quantified.
Parametric analysis of the system is then undertaken. It is shown that
increasing the flap width has the beneficial effect of broadening the bandwidth
of the capture factor curve. This phenomenon can be exploited in random seas to
achieve high levels of efficiency.Comment: Submitted to: EJMB/Fluids, 16/07/201
Trapped waves between submerged obstacles
Free-surface flows past submerged obstacles in a channel are considered. The fluid is assumed to be inviscid and incompressible and the flow to be irrotational. In previous work involving a single obstacle (Dias & Vanden-Broeck 2002), new solutions called ‘generalized hydraulic falls’ were found. These solutions are characterized by a supercritical flow on one side of the obstacle and a train of waves on the other. However, in the case of a single submerged object, the generalized hydraulic falls are unphysical because the waves do not satisfy the radiation condition. In this paper new solutions for the flow past two obstacles of arbitrary shape are computed. These solutions are characterized by a train of waves ‘trapped’ between the obstacles. The generalized hydraulic falls are shown to describe locally the flow over one of the two obstacles when the distance between the two obstacles is large
Statistical emulation of a tsunami model for sensitivity analysis and uncertainty quantification
Due to the catastrophic consequences of tsunamis, early warnings need to be
issued quickly in order to mitigate the hazard. Additionally, there is a need
to represent the uncertainty in the predictions of tsunami characteristics
corresponding to the uncertain trigger features (e.g. either position, shape
and speed of a landslide, or sea floor deformation associated with an
earthquake). Unfortunately, computer models are expensive to run. This leads to
significant delays in predictions and makes the uncertainty quantification
impractical. Statistical emulators run almost instantaneously and may represent
well the outputs of the computer model. In this paper, we use the Outer Product
Emulator to build a fast statistical surrogate of a landslide-generated tsunami
computer model. This Bayesian framework enables us to build the emulator by
combining prior knowledge of the computer model properties with a few carefully
chosen model evaluations. The good performance of the emulator is validated
using the Leave-One-Out method
Study of and interactions in and relationship to the , states
We use the local hidden gauge approach in order to study the and
interactions for isospin I=1. We show that both interactions via
one light meson exchange are not allowed by OZI rule and, for that reason, we
calculate the contributions due to the exchange of two pions, interacting and
noninteracting among themselves, and also due to the heavy vector mesons. Then,
to compare all these contributions, we use the potential related to the heavy
vector exchange as an effective potential corrected by a factor which takes
into account the contribution of the others light mesons exchange. In order to
look for poles, this effective potential is used as the kernel of the
Bethe-Salpeter equation. As a result, for the interaction we find
a loosely bound state with mass in the range MeV, very close to
the experimental value of the reported by Belle Collaboration. For
the case, we find a cusp at MeV for all spin
cases.Comment: 23 pages, 20 figure
- …