992 research outputs found

    A systematic review and meta-analysis on the prevalence of dementia in europe. estimates from the highest-quality studies adopting the dsm iv diagnostic criteria

    Get PDF
    BACKGROUND: Dementia, including Alzheimer's disease (AD), is one of the most burdensome medical conditions. Usually, the reviews that aim at calculating the prevalence of dementia include estimates from studies without assessing their methodological quality. Alzheimer's Disease International (ADI) proposed a score to assess the methodological quality of population-based studies aimed at estimating the prevalence of dementia. During the last three years, the European Commission has funded three projects (Eurodem, EuroCoDe, and ALCOVE) in order to estimate the prevalence of dementia in Europe. OBJECTIVE: The aim of this study was to perform a systematic review and meta-analysis of data on the prevalence of dementia in Europe derived from studies that included only subjects with a diagnosis of dementia according to the DSM IV criteria, and that had a high quality score according to ADI criteria. METHODS: We considered the studies selected by the two projects EuroCoDe (1993-2007) and Alcove (2008-2011), and we performed a new bibliographic search. For the systematic review, we only selected the subset of articles that included subjects with a diagnosis of dementia according to the DSM IV criteria. The studies were qualitatively assessed using the ADI tool. RESULTS: The meta-analysis considered 9 studies that were carried out in Europe between 1993 and 2018 including a total of 18,263 participants, of which 2,137 were diagnosed with dementia. The prevalence rate standardized for age and sex resulted 7.1%. DISCUSSION: This is the first systematic review on the prevalence of dementia in Europe considering only high-quality studies adopting the same diagnostic criteria (i.e., DSM IV)

    A phase field approach for damage propagation in periodic microstructured materials

    Get PDF
    In the present work, the evolution of damage in periodic composite materials is investigated through a novel finite element-based multiscale computational approach. The proposed methodology is developed by means of the original combination of asymptotic homogenization with the phase field approach to nonlocal damage. This last is applied at the macroscale level on the equivalent homogeneous continuum, whose constitutive properties are obtained in closed form via a two-scale asymptotic homogenization scheme. The formulation considers different assumptions on the evolution of damage at the microscale (e.g., damage in the matrix and not in the inclusion/fiber), as well as the role played by the microstructural reinforcement, i.e. its volumetric content and shape. Numerical results show that the proposed formulation leads to an apparent tensile strength and a post-peak branch of unnotched and notched specimens dependent not only on the internal length scale of the phase field approach, as for homogeneous materials, but also on microstructural features. Down-scaling relations provide the full reconstruction of the microscopic fields at any point of the macroscopic model, as a simple post-processing operation

    An estimate of attributable cases of alzheimer disease and vascular dementia due to modifiable risk factors. the impact of primary prevention in europe and in italy

    Get PDF
    Background: Up to 53.7% of all cases of dementia are assumed to be due to Alzheimer disease (AD), while 15.8% are considered to be due to vascular dementia (VaD). In Europe, about 3 million cases of AD could be due to 7 potentially modifiable risk factors: diabetes, midlife hypertension and/or obesity, physical inactivity, depression, smoking, and low educational level. Aims: To estimate the number of VaD cases in Europe and the number of AD and VaD cases in Italy attributable to these 7 potentially modifiable risk factors. Methods: Assuming the nonindependence of the 7 risk factors, the adjusted combined population attributable risk (PAR) was estimated for AD and VaD. Results: In Europe, adjusted combined PAR was 31.4% for AD and 37.8% for VaD. The total number of attributable cases was 3,033,000 for AD and 873,000 for VaD. In Italy, assuming a 20% reduction of the prevalence of each risk factor, adjusted combined PAR decreased from 45.2 to 38.9% for AD and from 53.1 to 46.6% for VaD, implying a 6.4 and 6.5% reduction in the prevalence of AD and VaD, respectively. Conclusion: A relevant reduction of AD and VaD cases in Europe and Italy could be obtained through primary prevention

    A novel layered topology of auxetic materials based on the tetrachiral honeycomb microstructure

    Get PDF
    Microstructured honeycomb materials may exhibit exotic, extreme and tailorable mechanical properties, suited for innovative technological applications in a variety of modern engineering fields. The paper is focused on analysing the directional auxeticity of tetrachiral materials, through analytical, numerical and experimental methods. Theoretical predictions about the global elastic properties have been successfully validated by performing tensile laboratory tests on tetrachiral samples, realized with high precision 3D printing technologies. Inspired by the kinematic behaviour of the tetrachiral material, a newly-design bi-layered topology, referred to as bi-tetrachiral material, has been theoretically conceived and mechanically modelled. The novel topology virtuously exploits the mutual collaboration between two tetrachiral layers with opposite chiralities. The bi-tetrachiral material has been verified to outperform the tetrachiral material in terms of global Young modulus and, as major achievement, to exhibit a remarkable auxetic behaviour. Specifically, experimental results, confirmed by parametric analytical and computational analyses, have highlighted the effective possibility to attain strongly negative Poisson ratios, identified as a peculiar global elastic property of the novel bi-layered topology

    Revealing the organic dye and mordant composition of Paracas textiles by a combined analytical approach

    Get PDF
    The object of this study is a wide selection of dyed cotton and camelid samples from an important collection of 2000-year-old Paracas textiles, now at the Museo Nacional de Arqueología, Antropología e Historia del Perú (MNAAHP; Lima; Peru) and at the National Museum of World Culture (NMWC; Gothenburg; Sweden). The threads, chosen as representative of the whole palette, were selected from eighteen different textiles. A combined spectroscopic and spectrometric analytical approach was selected to characterize the organic and inorganic composition of this wide set of samples. In particular, technical photography was used to gain a general overview of the samples, X-ray fluorescence (XRF) was employed for identifying the mordants and mapping the elemental distribution in the threads, while liquid chromatography coupled with diode array detector and with high-resolution mass spectrometry (HPLC–DAD, HPLC–HRMS) were used for characterizing organic dye composition. This study provides fundamental information on the mordants or other inorganic auxiliaries used in the dyeing processes, rarely investigated up to now, and to the varieties of vegetal sources employed in Paracas textiles. The widening of the Andean dyestuff database is highly important not only to acquire knowledge on Paracas culture, but also to ease the dye characterization of archaeological textiles from the Peruvian region and South American area in general.[Figure not available: see fulltext.]

    AAO Starbugs: software control and associated algorithms

    Full text link
    The Australian Astronomical Observatory's TAIPAN instrument deploys 150 Starbug robots to position optical fibres to accuracies of 0.3 arcsec, on a 32 cm glass field plate on the focal plane of the 1.2 m UK-Schmidt telescope. This paper describes the software system developed to control and monitor the Starbugs, with particular emphasis on the automated path-finding algorithms, and the metrology software which keeps track of the position and motion of individual Starbugs as they independently move in a crowded field. The software employs a tiered approach to find a collision-free path for every Starbug, from its current position to its target location. This consists of three path-finding stages of increasing complexity and computational cost. For each Starbug a path is attempted using a simple method. If unsuccessful, subsequently more complex (and expensive) methods are tried until a valid path is found or the target is flagged as unreachable.Comment: 10 pages, to be published in Proc. SPIE 9913, Software and Cyberinfrastructure for Astronomy IV; 201

    Methodological Issues in the Clinical Validation of Biomarkers for Alzheimer's Disease : The Paradigmatic Example of CSF

    Get PDF
    The use of biomarkers is profoundly transforming medical research and practice. Their adoption has triggered major advancements in the field of Alzheimer's disease (AD) over the past years. For instance, the analysis of the cerebrospinal fluid (CSF) and neuroimaging changes indicative of neuronal loss and amyloid deposition has led to the understanding that AD is characterized by a long preclinical phase. It is also supporting the transition towards a biology-grounded framework and definition of the disease. Nevertheless, though sufficient evidence exists about the analytical validity (i.e., accuracy, reliability, and reproducibility) of the candidate AD biomarkers, their clinical validity (i.e., how well the test measures the clinical features, and the disease or treatment outcomes) and clinical utility (i.e., if and how the test improves the patient's outcomes, confirms/changes the diagnosis, identifies at-risk individuals, influences therapeutic choices) have not been fully proven. In the present review, some of the methodological issues and challenges that should be addressed in order to better appreciate the potential benefits and limitations of AD biomarkers are discussed. The ultimate goal is to stimulate a constructive discussion aimed at filling the existing gaps and more precisely defining the directions of future research. Specifically, four main aspects of the clinical validation process are addressed and applied to the most relevant CSF biomarkers: (1) the definition of reference values; (2) the identification of reference standards for the disease of interest (i.e., AD); (3) the inclusion within the diagnostic process; and (4) the statistical process supporting the whole framework

    Use of biomarkers in ongoing research protocols on alzheimer’s disease

    Get PDF
    The present study aimed to describe and discuss the state of the art of biomarker use in ongoing Alzheimer’s disease (AD) research. A review of 222 ongoing phase 1, 2, 3, and 4 protocols registered in the clinicaltrials.gov database was performed. All the trials (i) enrolling subjects with clinical disturbances and/or preclinical diagnoses falling within the AD continuum; and (ii) testing the efficacy and/or safety/tolerability of a therapeutic intervention, were analyzed. The use of biomarkers of amyloid deposition, tau pathology, and neurodegeneration among the eligibility criteria and/or study outcomes was assessed. Overall, 58.2% of ongoing interventional studies on AD adopt candidate biomarkers. They are mostly adopted by studies at the preliminary stages of the drug development process to explore the safety profile of novel therapies, and to provide evidence of target engagement and disease-modifying properties. The biologically supported selection of participants is mostly based on biomarkers of amyloid deposition, whereas the use of biomarkers as study outcomes mostly relies on markers of neurodegeneration. Biomarkers play an important role in the design and conduction of research protocols targeting AD. Nevertheless, their clinical validity, utility, and cost-effectiveness in the “real world” remain to be clarified
    • …
    corecore