7,453 research outputs found

    The Decay Properties of the Finite Temperature Density Matrix in Metals

    Full text link
    Using ordinary Fourier analysis, the asymptotic decay behavior of the density matrix F(r,r') is derived for the case of a metal at a finite electronic temperature. An oscillatory behavior which is damped exponentially with increasing distance between r and r' is found. The decay rate is not only determined by the electronic temperature, but also by the Fermi energy. The theoretical predictions are confirmed by numerical simulations

    Bayesian Covariance Matrix Estimation using a Mixture of Decomposable Graphical Models

    Get PDF
    Estimating a covariance matrix efficiently and discovering its structure are important statistical problems with applications in many fields. This article takes a Bayesian approach to estimate the covariance matrix of Gaussian data. We use ideas from Gaussian graphical models and model selection to construct a prior for the covariance matrix that is a mixture over all decomposable graphs, where a graph means the configuration of nonzero offdiagonal elements in the inverse of the covariance matrix. Our prior for the covariance matrix is such that the probability of each graph size is specified by the user and graphs of equal size are assigned equal probability. Most previous approaches assume that all graphs are equally probable. We give empirical results that show the prior that assigns equal probability over graph sizes outperforms the prior that assigns equal probability over all graphs, both in identifying the correct decomposable graph and in more efficiently estimating the covariance matrix. The advantage is greatest when the number of observations is small relative to the dimension of the covariance matrix. The article also shows empirically that there is minimal change in statistical efficiency in using the mixture over decomposable graphs prior for estimating a general covariance compared to the Bayesian estimator by Wong et al. (2003), even when the graph of the covariance matrix is nondecomposable. However, our approach has some important advantages over that of Wong et al. (2003). Our method requires the number of decomposable graphs for each graph size. We show how to estimate these numbers using simulation and that the simulation results agree with analytic results when such results are known. We also show how to estimate the posterior distribution of the covariance matrix using Markov chain Monte Carlo with the elements of the covariance matrix integrated out and give empirical results that show the sampler is computationally efficient and converges rapidly. Finally, we note that both the prior and the simulation method to evaluate the prior apply generally to any decomposable graphical model.Covariance selection; Graphical models; Reduced conditional sampling; Variable selection

    Lower bounds for the conductivities of correlated quantum systems

    Full text link
    We show how one can obtain a lower bound for the electrical, spin or heat conductivity of correlated quantum systems described by Hamiltonians of the form H = H0 + g H1. Here H0 is an interacting Hamiltonian characterized by conservation laws which lead to an infinite conductivity for g=0. The small perturbation g H1, however, renders the conductivity finite at finite temperatures. For example, H0 could be a continuum field theory, where momentum is conserved, or an integrable one-dimensional model while H1 might describe the effects of weak disorder. In the limit g to 0, we derive lower bounds for the relevant conductivities and show how they can be improved systematically using the memory matrix formalism. Furthermore, we discuss various applications and investigate under what conditions our lower bound may become exact.Comment: Title changed; 9 pages, 2 figure

    Ground-state energy and Wigner crystallization in thick 2D-electron systems

    Full text link
    The ground state energy of the 2-D Wigner crystal is determined as a function of the thickness of the electron layer and the crystal structure. The method of evaluating the exchange-correlation energy is tested using known results for the infinitely-thin 2D system. Two methods, one based on the local-density approximation(LDA), and another based on the constant-density approximation (CDA) are established by comparing with quantum Monte-Carlo (QMC) results. The LDA and CDA estimates for the Wigner transition of the perfect 2D fluid are at rs=38r_s=38 and 32 respectively, compared with rs=35±5r_s=35\pm5 from QMC. For thick-2D layers as found in Hetero-junction-insulated-gate field-effect transistors, the LDA and CDA predictions of the Wigner transition are at rs=20.5r_s=20.5 and 15.5 respectively. Impurity effects are not considered here.Comment: Last figure and Table are modified in the revised version. Conclusions regarding the Wigner transition in thick layers are modified in the revised version. Latex manuscript, four figure

    Quasiparticle Electronic structure of Copper in the GW approximation

    Full text link
    We show that the results of photoemission and inverse photoemission experiments on bulk copper can be quantitatively described within band-structure theory, with no evidence of effects beyond the single-quasiparticle approximation. The well known discrepancies between the experimental bandstructure and the Kohn-Sham eigenvalues of Density Functional Theory are almost completely corrected by self-energy effects. Exchange-correlation contributions to the self-energy arising from 3s and 3p core levels are shown to be crucial.Comment: 4 pages, 2 figures embedded in the text. 3 footnotes modified and 1 reference added. Small modifications also in the text. Accepted for publication in PR
    • …
    corecore