
 
 
 

 
 
 
 

School of Economics 
UNSW, Sydney 2052 

Australia 
 

http://www.economics.unsw.edu.au 
 

ISSN 1323-8949 

ISBN 978 0 7334 2449 6 

 

 
 
 

 

Bayesian Covariance Matrix Estimation using a Mixture of 
Decomposable Graphical Models 

 

Helen Armstrong, Christopher K. Carter, Kevin K. F. Wong and 
Robert Kohn 

 

School of Economics Discussion Paper: 2007/13 
 
 

 
 

 
 

 
The views expressed in this paper are those of the authors and do not necessarily reflect those of the 
School of Economic at UNSW. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6758889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Bayesian Covariance Matrix Estimation using a Mixture
of Decomposable Graphical Models

Helen Armstrong

School of Mathematics, University of New South Wales Sydney, Australia.

Christopher K. Carter

CSIRO Mathematical and Information Sciences, Sydney, Australia.

Kevin K. F. Wong

The Institute of Statistical Mathematics, Graduate University for Advanced Studies, Tokyo,
Japan.

Robert Kohn

Faculty of Commerce and Economics, University of New South Wales, Sydney, Australia.

Summary. Estimating a covariance matrix efficiently and discovering its structure are im-
portant statistical problems with applications in many fields. This article takes a Bayesian
approach to estimate the covariance matrix of Gaussian data. We use ideas from Gaussian
graphical models and model selection to construct a prior for the covariance matrix that is a
mixture over all decomposable graphs, where a graph means the configuration of nonzero off-
diagonal elements in the inverse of the covariance matrix. Our prior for the covariance matrix
is such that the probability of each graph size is specified by the user and graphs of equal size
are assigned equal probability. Most previous approaches assume that all graphs are equally
probable. We give empirical results that show the prior that assigns equal probability over
graph sizes outperforms the prior that assigns equal probability over all graphs, both in identi-
fying the correct decomposable graph and in more efficiently estimating the covariance matrix.
The advantage is greatest when the number of observations is small relative to the dimension
of the covariance matrix. The article also shows empirically that there is minimal change in sta-
tistical efficiency in using the mixture over decomposable graphs prior for estimating a general
covariance compared to the Bayesian estimator by Wong et al. (2003), even when the graph of
the covariance matrix is nondecomposable. However, our approach has some important ad-
vantages over that of Wong et al. (2003). Our method requires the number of decomposable
graphs for each graph size. We show how to estimate these numbers using simulation and that
the simulation results agree with analytic results when such results are known. We also show
how to estimate the posterior distribution of the covariance matrix using Markov chain Monte
Carlo with the elements of the covariance matrix integrated out and give empirical results that
show the sampler is computationally efficient and converges rapidly. Finally, we note that both
the prior and the simulation method to evaluate the prior apply generally to any decomposable
graphical model.
KEY WORDS: Covariance selection; Graphical models; Reduced conditional sampling; Vari-
able selection
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1. Introduction

Estimating a covariance matrix efficiently is an important statistical problem with many
applications, such as multivariate regression, cluster analysis, factor analysis, and discrimi-
nant analysis; see, for example, Mardia et al. (1979). Such applications are used in the fields
of Business, Engineering, and the physical and social sciences. It is also of considerable in-
terest to understand the graphical structure of the covariance matrix because it is directly
interpretable in terms of the partial correlations of the underlying multivariate distribution.
By the graph of the covariance matrix we mean the pattern of nonzero off diagonal elements
in the inverse of the covariance matrix, also called the concentration matrix (see Lauritzen
1996, Chapter 5). Estimating a covariance matrix efficiently and understanding its graphi-
cal structure are difficult estimation problems because the number of unknown parameters
in the covariance matrix increases quadratically with dimension and by the requirement
that the estimate of the covariance matrix is positive definite.

There is a large literature of methods that use shrinkage or Bayesian models to improve on
the maximum likelihood estimator of the covariance matrix. See, for example, Dempster
(1969), Dempster (1972), Efron and Morris (1976), Yang and Berger (1994), Chiu et al.
(1996), Giudici and Green (1999), Barnard et al. (2000), Wong et al. (2003) and Liechty
et al. (2004). The simulation studies in Yang and Berger (1994) and Wong et al. (2003)
show that considerable gains in efficiency are possible.

Dempster (1972) advocates a covariance selection approach to estimate a covariance matrix
more efficiently, by which he means setting to zero some of the off-diagonal elements of
the concentration matrix. His idea is that a more parsimonious model will give greater
efficiency. However, the selection of which elements to set to zero is difficult even for
moderate dimensions because a p × p concentration matrix has p(p − 1)/2 distinct off-
diagonal entries and there are 2p(p−1)/2 possible graphs associated with it. Drton and
Perlman (2004) give a model selection approach based on simultaneous confidence intervals
to determine which partial correlations are zero. The simultaneous confidence intervals are
based on large sample theory and become large when p is moderate to large. Drton and
Perlman (2004) do not attempt to estimate the covariance matrix based on their selected
graph.

A number of articles take a Bayesian approach to covariance selection. For the case of
decomposable graphs, Dawid and Lauritzen (1993) introduces a conjugate prior for the
covariance matrix called the hyper inverse Wishart distribution. Giudici (1996) uses a prior
for the covariance matrix that is a mixture of fixed parameter hyper inverse Wishart priors
over decomposable graphs and calculates the marginal likelihood for each decomposable
graph. The marginal likelihood is used to calculate the posterior probability of each graph.
This gives an exact solution for small examples, but for p greater than approximately 8 the
number of graphs is prohibitively large.

Roverato (2000) shows that the hyper inverse Wishart prior for the covariance matrix is
equivalent to a constrained Wishart prior for the concentration matrix. It is straightforward
to define a constrained Wishart prior for general graphs, however, such distributions have
normalizing constants that are not available analytically unless the graph is decomposable.
Roverato (2002), Dellaportas et al. (2004) and Atay-Kayis and Massam (2005) propose effi-
cient simulation and importance sampling methods for estimating the normalizing constants
for the nondecomposable graphs. The normalizing constants are used to examine a small
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number of graphs and select those that that have the highest marginal likelihood or pos-
terior probability, rather than to estimate the covariance matrix by averaging over graphs.
However, such an approach seems unsuitable as the basis of a Markov chain Monte Carlo
sampling scheme when p is moderate to large because there are 2p(p−1)/2 possible graphs
with only a small fraction of them being decomposable.

Giudici and Green (1999) give a MCMC approach that can deal with large values of p. Their
method applies to a hierarchical model with a hyper inverse Wishart prior for the covariance
matrix conditional on a decomposable graph. They use reversible jump Metropolis-Hastings
methods to generate the covariance matrix and other parameters. Their method has a local
computation property that only requires Cholesky decompositions of the submatrix of the
covariance matix corresponding to a clique of the graph. Brooks et al. (2003) modify the
reversible jump MCMC proposal of Giudici and Green (1999) and give empirical results to
show this improves the convergence rate.

Wong et al. (2003) also use MCMC methods to select which off-diagonal element to set
to zero. They use reversible jump Metropolis-Hastings methods to generate the inverse
covariance matrix and other parameters. The main difference between Giudici and Green
(1999) and Wong et al. (2003) is that Wong et al. (2003) do not constrain the possible graphs
to be decomposable. Wong et al. (2003) use a prior with normalizing constants based on
graph size to avoid having to calculate normalizing constants for each nondecomposable
graph. They also need to run a separate MCMC to estimate the normalizing constants for
each graph size.

For longitudinal data, Smith and Kohn (2002) factor the concentration matrix using a
Cholesky decomposition and carry out variable selection on the strict lower triangle of the
Cholesky to obtain parsimony. Their approach is attractive when there is some natural
ordering of the observation vector, but there are two potential drawbacks to the Cholesky
approach when such a natural ordering does not exist. First, different orderings of the vari-
ables can yield different estimates of the covariance matrix. Second, under some orderings
the Cholesky factor may be quite full even if the concentration matrix is sparse.

In this paper we consider Bayesian estimation of decomposable covariance selection models,
also known as decomposable graphical Gaussian models. Our article makes the following
contributions. First, we propose a prior for the covariance matrix such that the probability
of each graph size is specified by the user, whereas most previous approaches, e.g. Giudici
and Green (1999), assume that all graphs are equally probable. We show by simulation that
the prior that assigns equal probability over graph sizes outperforms the prior that assigns
equal probability over all graphs, both in identifying the correct decomposable model and
in estimating the covariance matrix more efficiently. This advantage is greatest when the
number of observations is small relative to the dimension of the covariance matrix. We
also show by simulation that there is minimal change in statistical efficiency in using our
mixture prior compared to the estimator of Wong et al. (2003), even when the graph of the
covariance matrix is nondecomposable.

Our prior requires knowing the number of decomposable graphs for each graph size. The
second contribution of the article is to give a MCMC method for estimating these counts.
and to show that the counts obtained by the simulation method agree with analytic results
when such results are known.

Our third contribution is to use the marginal likelihood results in Giudici (1996) to derive
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a reduced conditional MCMC sampler for decomposable graphical models, where the co-
variance matrix is integrated out of all conditional distributions and is not generated in
the MCMC. Our approach does not require reversible jump Metropolis-Hasting methods
and has the local computation properties of the Giudici and Green (1999) approach, so the
computational complexity for one iteration of our approach is similar to that of Giudici and
Green (1999). We expect that our sampler has a faster convergence rate to that of Giudici
and Green (1999) and Brooks et al. (2003), but we have not compared them emprically. We
show that our sampler has a faster convergence rate than the Wong et al. (2003) approach.
A comparison between the MCMC methods described in this paper and a stochastic search
approach for finding the graph with maximum posterior probability is the subject of a
forthcoming paper (Jones et al. (2005)).

The results in our article suggest that at present there is no ‘best’ method for estimating
Gaussian covariance selection models. While the method of Wong et al. (2003) works in
principle for all graphs, the convergence of their MCMC simulation can be slow if the
true graph has full subgraphs of size 5 or larger because Wong et al. (2003) generate the
elements of the concentration matrix one at a time. On the other hand the sampling
scheme for decomposable graphs presented in our article is extremely efficient because the
concentration matrix is integrated out and is an attractive alternative to the Wong et al.
(2003) model for high dimensional graphs that are likely to have substantial full subgraphs.
There are two other advantages of the decomposable prior considered in our article. The
first is that there is a separate normalizing constant for each decomposable graph, whereas
Wong et al. (2003) have a normalizing constant for each graph size. The second is that
the Wong et al. (2003) model does not at present allow for hyperparameters in the prior.
For example, using an equicorrelated prior as in Giudici and Green (1999) is not at present
feasible with the approach of Wong et al. (2003).

The paper is organized as follows. Section 2 briefly introduces graphical Gaussian models.
Section 3 describes our Baysian covariance selection model and Section 4 describes our
MCMC approach to estimating this model. Section 5 compares the prior that assigns
equal probablity to each graph size to the prior that assigns equal probability to each
decomposable graph. Section 6 shows how to estimate the number of decomposable graphs
for each size by simulation. Section 7 compares the prior that assigns equal probability to
each graph size to the prior of Wong et al. (2003). There are two appendices. The first
gives the proofs of the results in the paper. The second gives a computationally efficient
expression for evaluating the ratio of normalizing constants from Section 4.1.

2. Background on Gaussian graphical models

Before explaining our Bayesian covariance selection model we provide some background on
Gaussian graphical models. Further details on such models are available in Dawid and
Lauritzen (1993) and Chapters 2, 3 and 5 of Lauritzen (1996).

Let g = (V,E) be an undirected graph with vertices V = {1, . . . , p} and set of edges
E ⊆ V ×V . For a square matrix A we write A > 0 to denote that A is positive definite. Let
M+(g) be the set of p× p matrices Ω satisfying Ω > 0 and Ωij = 0 for all pairs (i, j) /∈ E.

For a given p × p covariance matrix Σ, we define the graph of Σ, g = g(Σ) = (V,E), as
follows. Let Ω = Σ−1. Let V = {1, . . . , p} and define E = {(i, j), i �= j such that Ωij �= 0}.
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Thus the graph g = g(Σ) gives the configuration of nonzero off-diagonal elements in Ω.

We say that an m × m matrix A > 0 has an inverse Wishart (IW) density with δ > 0
degrees of freedom and scale matrix Φ, denoted as A ∼ IW (m, δ,Φ), if the density of A is

p(A|δ,Φ) = |Φ2 |
δ
2

Γm( δ2 )
|A|− (δ+m+1)

2 etr
(
−1
2
ΦA−1

)
, (1)

where etr(A) = exp(trace(A)) and for α > (m−1)
2 ,

Γm(α) = πm(m−1)/4
m∏
i=1

Γ(α− (
i− 1
2

))

is the multivariate gamma function (Muirhead, 1982, p. 113).

Lauritzen (1996, Definition 2.3, p.8) defines a decomposable graph and we refer to a covari-
ance matrix Σ as decomposable if its graph g = g(Σ) is decomposable.

Suppose that g is a decomposable graph and let C1, . . . , Ck be a perfect sequence of the
cliques of g. Let Hj = C1 ∪ . . . ∪Cj be the history of the sequence and let Sj = Hj−1 ∩Cj
be the separators for j = 2, . . . , k. For any matrix M and subset of vertices B, use MBB to
denote the symmetric submatrix of M which is formed by taking every corresponding entry
Mij for which the vertices {Vi, Vj} ∈ B. Using the parameterization of Dawid (1981), we
say Σ has a hyper inverse Wishart (HIW) distribution, with hyperparameters (δ,Φ) denoted
by Σ ∼ HIW (g, δ,Φ), if for Σ−1 ∈ M+(g)

p(Σ|δ,Φ, g) =

k∏
i=1

p (ΣCiCi |δ,ΦCiCi)

k∏
i=2

p (ΣSiSi |δ,ΦSiSi)

, (2)

where δ > 0, Φ > 0, and the density is with respect Lebesgue measure on the elements of
Σ corresponding to edges of g.

In (2), the terms p (ΣCiCi |δ,ΦCiCi) denote the IW densities ΣCiCi ∼ IW (|Ci|, δ + |Ci| − 1,ΦCiCi)
given by

p (ΣCiCi |δ,ΦCiCi) =

∣∣∣ΦCiCi

2

∣∣∣
(

δ+|Ci|−1
2

)

Γ|Ci|
(
δ+|Ci|−1

2

) |ΣCiCi |
−

(
δ+2|Ci|

2

)
etr

[
−1
2
(ΣCiCi)

−1 ΦCiCi

]
, (3)

where |Ci| denotes the cardinality of the clique Ci, and the terms p (ΣSiSi |δ,ΦSiSi) are
defined similarly. Note that the expression in (2) is invariant to the choice of perfect
sequence.

From (1) – (3), the normalizing constant for the HIW distribution is

h(g, δ,Φ) =

k∏
i=1

[∣∣∣ΦCiCi

2

∣∣∣( δ+|Ci|−1
2 )

Γ|Ci|
(
δ+|Ci|−1

2

)−1
]

k∏
i=2

[∣∣∣ΦSiSi

2

∣∣∣( δ+|Si|−1
2 )

Γ|Si|
(
δ+|Si|−1

2

)−1
] . (4)
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3. Bayesian Covariance Selection models

3.1. Likelihood and hierarchical structure

Suppose we have independent observations

yt ∼ N(µ,Σ), t = 1, · · · , n, (5)

where yt is p × 1. Let y = (y1, · · · , yn) be the data. We use a hierarchical prior for µ and
Σ of the form

p(µ,Σ,Φ, δ, g) = p(µ|Σ,Φ, δ, g)p(Σ|Φ, δ, g)p(Φ|δ, g)p(δ|g)p(g),
where each of the terms on the right is discussed below. In our article we assume that
p(µ|Σ,Φ, δ, g) ∝ constant, as our focus is on priors for Σ. The prior for Σ depends on its
graph g, the p × p matrix Φ and the scalar δ, and is is discussed in Section 3.2. Section 2
defines the graph of Σ as the configuration of nonzero off diagonal elements in Σ−1. The
prior for Φ is discussed in Section 3.3 and the prior for the graph g is discussed in Section 3.4.

In the article we restrict the graph of Σ to be decomposable, so that the prior for Σ is
a mixture over all decomposable graphs. We explain in Section 2 that this is equivalent
to the prior for Ω = Σ−1 being a mixture over all Wishart distributions constrained to
decomposable graphs.

3.2. Prior for Σ

We use the HIW prior (2) for Σ|Φ, δ, g, which allows Σ to be integrated out in the sampling
scheme described in Section 4. Thus, our prior

p(dΣ|Φ, δ) =
∑
g

p(dΣ|g,Φ, δ)p(g)

is a mixture of HIW distributions over all decomposable graphs g As discussed in the
introduction, Roverato (2000) shows that the inverse of a HIW randommatrix has a Wishart
distribution, subject to the constraints imposed by the corresponding graph. Thus

p(dΣ|Φ, δ) =
∑
g

p(dΣ|g,Φ, δ)p(g)

is a mixture of of constrained Wishart distributions over all decomposable graphs.

In our article we set the degrees of freedom parameter δ to 5 as such a value of δ gives a
suitably noninformative prior for Σ.

3.3. Prior specification for Φ and its parameters

We consider the following three specifications for the hyperparameter Φ, and refer to them
as the hyperprior forms of Φ:

(a) Φ = τI, τ > 0 where I is the p× p identity matrix.
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(b) Φ = τ(ρJ +(1− ρ)I), τ > 0 where J is the p× p matrix of ones and ρ is a correlation
coefficient that needs to be in the open interval (−1/(p − 1), 1) for Φ to be positive
definite. This specification is used by Giudici and Green (1999) and is called the
equicorrelated version of Φ because Φii = τ and Φij = τρ for i �= j.

(c) Φ = τSy/(n− 1),where τ > 0,

Sy =
n∑
t=1

(yt − y)(yt − y)′, (6)

and y is the mean of the yt.
We motivate the choice of Φ in two ways. First, by integrating µ out of p(y|µ,Σ),
with p(µ) constant, we obtain

p(y|Σ) ∝ |Σ|−(n−1)/2 etr
(
−1
2
SyΣ−1

)
. (7)

Suppose g is a decomposable graph. If we take p(Σ|g) ∝ p(y|Σ)1/(n−1), then from
(7) and equation (3) of Giudici (1996), we can write p(Σ|g) in the form (3) with
Φ = Sy/(n− 1).
A second motivation for this choice of Φ is to note that if Σ ∼ HIW (p, δ,Φ), then
E(ΣCC) = ΦCC/(δ − 2) for any clique C = Ci or separator C = Si in (2). Since
(Sy)CC/(n−1) is an unbiased estimator of ΣCC , this suggests taking Φ ∝ Sy/(n−1).

We assume in all cases that τ is uniform on the interval [0,Γ] where Γ is large, e.g. Γ = 1010,
and in the equicorrelated case that ρ is uniform on the open interval (−1/(p− 1), 1).

3.4. Prior for g

We first define notation for the edge indicators of a graph g. Let

eij =
{

1 if (i, j) ∈ E
0 otherwise (8)

and let e−ij = {ekl : (k, l) �= (i, j)}. Note that any graph g = (V,E) can be unambiguously
written as g = (eij , e−ij).

For a given graph g = g(Σ), let the number of edges, or the size of g, be given by

size(g) =
∑
i<j

eij (9)

i.e. size(g) is the number of nonzero elements in the strict upper triangle of Ω, and size(g) ≤
r = p(p− 1)/2.

Because of the theoretical and practical difficulty in calculating for a given p the exact
number of decomposable graphs, or the number of graphs of a given size, most of the
literature for both decomposable and general models takes the prior for g as uniform over
all the relevant graphs; see, for example, Giudici and Green (1999), Dellaportas and Forster
(1999), Geiger and Heckerman (2002), Giudici and Castelo (2003), Roverato (2002), and
Atay-Kayis and Massam (2005).
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Such a prior favours any class of graphs with many members over a class with few members,
and favours middle sized graphs over both very large and very small sized graphs.

Let Ap,k denote the number of graphs of size k. We specify the prior for a graph g hierar-
chically as follows.

p(g|size(g) = k) =
1

Ap,k
,

so that all graphs of a given size are equally likely. We now specify the prior for the size of
a graph. One choice is

p(size = k) ∝ Ap,k,

which means that

p(g) = p(g, size(g)) = p(g|size(g))p(size(g)) ∝ constant,

giving the uniform prior for g. A more flexible prior is of the form

p(size = k|ψ) =
(
r

k

)
ψk(1− ψ)r−k,

where we interpret ψ as the probability that any two vertices have a common edge. We
could then put a prior on ψ. Suppose we take the prior for ψ as a beta with parameters a
and b, i.e.

p(ψ) =
ψa−1(1− ψ)b−1

B(a, b)
.

Then,

p(size = k) =
(
r

k

)
B(a+ k, r − k + b)

B(a, b)

and

p(g) = p(g|size(g))p(size(g)) (10)

=
(

r

size(g)

)
B(a+ size(g), r− size(g) + b)

Ap,size(g)B(a, b)
, (11)

where B(a, b) is the beta function. We could now also put a prior on a, b. In our article we
take ψ uniform so that a = b = 1, which means that

p(size = k) =
1

(r + 1)
and p(g) =

1
(r + 1)Ap,k

.

That is, the size of each graph has equal probability, and the probability of a graph of size
k conditional on size = k is uniform. However our framework is more flexible than this.

We call this the size based prior for g and compare results against those using a uniform
prior.

The size based prior makes it easier to discover sparse and full graphs when n/p is small.
The counts Ap,k are not available in the literature. Section 6 gives results to calculate a
subset of them analytically, and shows how to evaluate the rest by simulation.
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4. Posterior inference and Markov chain Monte Carlo sampling

We use Markov Chain Monte Carlo (MCMC) simulation to obtain all posterior distributions.
The simulation involves the generation of the graphs g and the parameters in Φ but not Σ
and µ which are integrated out. Thus, our sampling scheme is said to generate from reduced
conditionals and is therefore expected to be more efficient than the sampling schemes in
Giudici and Green (1999) and Wong et al. (2003) that generate Σ as part of their sampling
scheme.

We note that iterates of µ and Σ can also be generated in conjunction with the simulation,
but such iterates of µ and Σ do not have any influence on the convergence properties or
dependence structure of the reduced conditional simulation.

The following theorems are useful in evaluating the conditional distributions required in the
simulations. The first theorem gives a conjugate prior property of the HIW distribution.

Let Sy be defined by (6) and define

Φ∗ = Φ + Sy and δ∗ = δ + n− 1 . (12)

Theorem 1. (Dawid and Lauritzen, 1993) For the Bayesian model specified by (2) and (7)

Σ|y, δ,Φ, g ∼ HIW (g, δ∗,Φ∗).

Proof. See Dawid and Lauritzen (1993) or Appendix A.

The next theorem gives an expression for the marginal likelihood.

Theorem 2. (Giudici, 1996) For the Bayesian model specified by (2) and (7),

p(y|δ,Φ, g) = (2π)−((n−1)p/2) h(g, δ,Φ)
h(g, δ∗,Φ∗)

(13)

Proof. See Giudici (1996) or Appendix A .

4.1. Sampling the graphs g

We sample the graphs g by generating the edge indicators one at a time, conditional on δ,Φ
and e−ij = {ekl, (k, l) �= (i, j), k < l} using the following MH sampling scheme.

Using the notation of Section 3, let gc = (V,Ec) be the current graph of Σ, which is
decomposable by construction with edge indicators {eckl : 1 ≤ k < l ≤ p}.
We choose a pair (i, j) at random and suppose that g = (eij , ec−ij) is decomposable for
both eij = 0 and eij = 1. We use the legal edge addition and deletion characterizations of
Giudici and Green (1999) and Frydenberg and Lauritzen (1989) respectively to ensure this.
Otherwise we choose a new pair (i, j).

Set the proposal graph as gp (conditional on gc) as g = (epij , e
c
−ij) where e

p
ij = 1− ecij . This

means that the proposal density for eij is qg(a|b, ec−ij) where a and b are each either 0 or 1,
and qg(a = 1− b|b, ec−ij) = 1.
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The MH acceptance probabilty for the proposal is

min
{
1,

p(y|gp,Φ, δ)
p(y|gc,Φ, δ)

p(gp)
p(gc)

}
(14)

because qg(ecij |epij , ec−ij)/qg(epij |ecij , ec−ij) = 1. The ratio p(gp)/p(gc) is known and the ratio
of marginal likelihoods

p(y|gp,Φ, δ)
p(y|gc,Φ, δ) =

h(gp, δ,Φ)
h(gc, δ,Φ)

h(gc, δ∗,Φ∗)
h(gp, δ∗,Φ∗)

. (15)

A simple expression for (15) is derived in Appendix B.

4.2. Generating the parameters in Φ

In all cases of Section 3.3 we generate τ using a random walk MH method

log(τp) = log(τc) + ξτ , ξτ ∼ N(0, σ2
τ ),

which has acceptance probability

min
{
1,

p(y|g, τp, ρ)
p(y|g, τc, ρ)

p(τp)
p(τc)

}
(16)

as the proposal densities cancel out. In the equicorrelated case, the parameter ρ is generated
similarly to τ by a random walk MH method

ρp = ρc + ξρ , ξρ ∼ N(0, σ2
ρ).

The choice of the variances σ2
τ , σ

2
ρ is sensitive to p, and was fine tuned to attain acceptance

probabilities of around 25% according to the acceptance rate of the proposals. For the case
p = 17 reported in this paper, such an acceptance probability resulted from using σ2

τ = 1/10
and σ2

ρ = 1/20.

4.3. Generating Σ,Ω and µ

Although µ,Σ and Ω are not generated in the MCMC simulation, it is often necessary to
estimate functionals of µ,Σ and Ω. Such functionals can be estimated by sampling from
the posterior distribution of Σ,Ω and µ. Conditional on (g, δ,Φ) it follows from Theorem 1
that p(Σ|y, g, δ,Φ) is HIW (δ + n − 1,Φ + Sy) so that Σ and Ω can be generated using
Theorems 3 and 4 of Roverato (2000). It is straightforward to show that p(µ|y,Σ, g, δ,Φ) is
N(y,Σ/n), and hence to generate µ, giving iterates {µ[j],Σ[j],Ω[j], j ≥ 1} from the posterior
distribution.

4.4. Efficient estimation of E(Ω|y)
The posterior mean of Ω is not only used as an estimator of Ω, but also of Σ because
E(Ω|y)−1 is the Bayes estimator of Σ for the L1 loss function in Section 5. One method
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of estimating E(Ω|y) is to use the histogram estimator J−1
∑J
j=1 Ω

[j]. A statistically more
efficient estimator is the mixture estimator J−1

∑J
j=1 E(Ω|y, g[j], δ[j],Φ[j]).

We now show how to efficiently compute E(Ω|y, g, δ,Φ) using the following notation from
Lauritzen (1996). Suppose that A is a p × p matrix and S ⊂ V . Let B = [ASS ]

V be the
p× p matrix defined by

Bij =
{

Aij if {i, j} ⊂ S
0 otherwise

Theorem 3. Suppose that Ω|y ∼ W (g, δ∗,Φ∗), where g is decomposable. Then, using the
notation of this and Section 3,

E (Ω|y, δ,Φ, g) =
k∑
i=1

[
(δ∗ + |Ci| − 1)

(
Φ∗
CiCi

)−1
]V

−
k∑
i=2

[
(δ∗ + |Si| − 1)

(
Φ∗
SiSi

)−1
]V

.

(17)

Proof. See Appendix A.

5. Comparison of the size prior for a graph with the uniform prior

This section compares the prior based on the graph size with the uniform prior that is used
in most previous articles. Performance is in terms of a loss function and a simulation was
carried out to numerically assess performance. We found that overall the size based prior
for g outperformed the uniform prior.

Our simulation considered the following five graph types for g. (a) Ω = I, the identity
matrix, representing the empty graph and a diagonal covariance matrix; (b) Ω tridiagonal,
representing a sparse and decomposable graph (this is a chain graph with p − 1 edges);
(c) Ω an ‘extreme’ full matrix (the correlation coefficients ρij of Ω−1 satisfy |ρij | > .30),
which is a complete graph; (d) Ω corresponding to a 4-cycle on p vertices representing a
sparse but nondecomposable graph; and (e) Ω corresponding to a p−cycle on p vertices,
again representing a sparse but nondecomposable graph. We note that the nondecomposable
graphs in (d) and (e) require the addition of extra edges when we estimate them by a mixture
of decomposable graphs. Furthermore, (e) is an extreme case of non-decomposability, as it
requires a minimum of p− 3 fill ins. Conversely, the unchorded 4-cycle on p nodes requires
the fewest number of fill ins, so was chosen as an indicator of performance for the sparsest
nondecomposable case.

The simulation considered the three forms of Φ described in Section 3.3 and two sample
sizes n = 40 and n = 100. We report results for matrices of size p = 17, but similar results
were obtained for matrices of other sizes.

Let ΣT be the true value of Σ and let Σ̂ be an estimator of ΣT . We measure the performance
of Σ̂ using the L1 loss function

L1(Σ̂,ΣT ) = trace(Σ̂Σ−1
T )− log det(Σ̂Σ−1

T )− p. (18)

This loss function is frequently used to compare estimates of the covariance matrix, e.g. Yang
and Berger (1994). It is straightforward to show that L1 ≥ 0 for all Σ̂ and ΣT , and that it
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is only equal to 0 if Σ̂ = ΣT . It is also straightforward to show that for y ∼ N(0,Σ),

L1(Σ̂,ΣT ) = −
∫

p(y|Σ̂) log
(
p(y|ΣT )
p(y|Σ̂)

)
dy (19)

i.e. L1 is equivalent to a Kullback-Liebler distance between p(y|ΣT ) and p(y|Σ̂) with respect
to the density p(y|Σ̂). The Bayes estimator for Σ for the L1 loss function is E(Ω|y)−1, which
can be computed as in Section 4.4.

We use boxplots to compare replication by replication the size based prior with the uniform
prior in terms of the percentage increase in the loss function L1 resulting from using the
uniform prior compared to the size-based prior; i.e. the boxplots are based on calculating

100(Lunif1 − Lsize1 )/Lsize1

for each replication, where Lunif1 and Lsize1 are the values of L1(Σ̂,ΣT ) for the uniform and
size based priors respectively.

The boxplots are based on 20 replications with each replication consisting of 2,000 burnin
iterations and 20,000 sampling iterations. We ran the sampler for the case p = 17 on n = 40
and 100 observations from five simulated data sets corresponding to the five models (a)–(e)
for Ω.

Figure 1 presents the results for p = 17. The plots show that for Φ = τI and Φ equicorre-
lated, the size prior is at least as good, and often much better than, the uniform prior. For
Φ = τSy/(n− 1), the comparison between the size prior and the uniform prior is inconclu-
sive for n = 40, but for n = 100 the size prior is at least as good as, and often better than
the uniform prior. We conclude that the size based prior outperforms the uniform prior.

We also compared the performance of the three forms of Φ for the uniform and size priors
and found that overall the equicorrelated form of Φ using the size based prior for the graph
performed best, and it is this combination that we use for the rest of the paper.

6. Evaluating the size based prior

To use the size based prior for graphs on p vertices, we need the set of numbers {Ap,k :
k = 0, . . . , r} where Ap,k is the number of decomposable graphs of size k on p vertices, and
r =

(
p
2

)
is the maximum graph size. These numbers are not in the literature, nor is there a

general method available for computing them. In this section we present some exact values
of Ap,k as well as a simulation method that can estimate the Ap,k as precisely as necessary.

Let Bp,k be the number of connected decomposable graphs of size k on p vertices. Equa-
tions (3) and (4) of Castelo and Wormald (2001) give recurrences to calculate Ap,k from
the Bp,k analytically, and the information to calculate all Bp,k analytically is implicit in
Wormald (1985). For p ≤ 8, Wormald (1985) gives the Bp,k from which we computed the
Ap,k and these are reported in Table 1.

However, Wormald’s (1985) analytic approach for obtaining the Bp,k is likely to be com-
putationally intractable for p > 25 (private correspondence with Wormald) and even for
8 < p ≤ 25 obtaining the Bp,k would take weeks on realistically sized computers. Further-
more, analytically deriving the Ap,k from the Bp,k is computationally feasible only for small
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Table 1. For each p, 2 ≤ p ≤ 8 the table gives each A p,k, 0 ≤ k ≤ r and
Ap =

∑r
k=0 Ap,k. The table also gives for each p the percentage of graphs that are

decomposable.
k 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1
1 1 3 6 10 15 21 28
2 3 15 45 105 210 378
3 1 20 120 455 1330 3276
4 12 195 1320 5880 20265
5 6 180 2526 18522 92988
6 1 140 3085 40647 315574
7 90 3255 60795 770064
8 30 3000 79170 1357818
9 10 2235 92785 2078300
10 1 1206 94521 2892176
11 615 81417 3621576
12 260 58485 4016439
13 60 40110 3916724
14 15 24255 3432660
15 1 12222 2855748
16 4872 2185484
17 1890 1488984
18 595 902944
19 105 493220
20 21 258468
21 1 118504
22 46046
23 14868
24 4690
25 1176
26 168
27 28
28 1∑r

k=0 Ap,k 2 8 61 822 18,154 617,675 30,888,596

% decomposable 100% 100% 95% 80% 55% 29% 12%
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Fig. 1. Percentage increase in loss of uniform prior relative to the size prior measured under L 1 loss.
The left panels correspond to n = 40 and the right panels to n = 100. tauI, equi and tauS correspond
to Φ = τI , Φ equicorrelated and Φ = τSy/(n − 1).

p. Because of these difficulties we propose a simulation methodology to estimate the Ap,k
for all p.

6.1. Methodology

We begin with some exact results which can be used to calculate {Ap,k : k ≤ 5 and r− 2 ≤
k ≤ r} analytically for any p. Let Fp,k denote the number of nondecomposable graphs
having p vertices and k edges.

Lemma 4. (a) Ap,k =
(
r
k

) − Fp,k.
(b) Fp,0 = Fp,1 = Fp,r = 0, p ≥ 0.
(c) Fp,2 = Fp,r−1 = 0, p ≥ 2.
(d) Fp,3 = 0, p ≥ 3.

Proof. The proof is obvious.
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Lemma 5. (a) For p ≥ 4, Fp,4 =
(
p
4

) × 3.
(b) For p ≥ 4, Fp,r−2 = Fp,4.
(c) For p ≥ 5, Fp,5 =

(
p
5

) × 12 +
(
p
4

) × 3× (r − 6).

Proof. See Appendix A.

We now show how to estimate the {Ap,k : 6 ≤ k ≤ r − 3} for all p. Our approach is to run
a separate simulation to estimate each Ap,k for 6 ≤ k ≤ r − 3. The simulations are done in
ascending order of k, i.e. k = 6, . . . , r − 3, and the simulation to estimate a particular Ap,k
is restricted to graphs of size ≤ k and uses the estimates Âp,j of Ap,j for j = 6, · · · , k − 1
that have been calculated in previous simulations.

We now describe the details of the simulation to estimate a particular Ap,k. Let φp,k be the
initial estimate of Ap,k given by

φp,k = α̃p,k
Â2
p,k−1

Âp,k−2

(20)

with α̃p,k chosen in the range (0.5, 1). To justify this choice of φp,k, we note that we have
found empirically that logAp,k is approximately a negative quadratic (see figures 2 and 3)
so that logAp,k − 2 logAp,k−1 + logAp,k−2 ≤ 0, and hence

αp,k =
Ap,k/Ap,k−1

Ap,k−1/Ap,k−2
≤ 1.

We have also found empirically that αp,k is likely to exceed 0.5.

As

Ap,k = αp,k
A2
p,k−1

Ap,k−2

the above discussion suggests the choice of φp,k in (20). Further details on the choice of
α̃p,k can be obtained from the authors.

We use Lemmas 4 and 5, the estimates Âp,j of Ap,j for j = 6, · · · , k − 1 that have been
calculated in previous simulations, and the initial estimate φp,k of Ap,k given above to define
the following probability distribution pe(g) on the graphs g of size ≤ k. To simplify the
notation we omit subscripts for p and k in pe(g).

pe(g) ∝


1

Ap,size(g)
if 0 ≤ size(g) ≤ 5

1

Âp,size(g)
if 6 ≤ size(g) ≤ k − 1

1
φp,k

if size(g) = k

(21)

which implies that

pe(size = k)
pe(size ≤ 5)

=
Ap,k/φp,k∑5
j=0 Ap,j/Ap,j

=
1
6
Ap,k/φp,k
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and hence

Ap,k = 6φp,k
pe(size = k)
pe(size ≤ 5)

.

By running the simulation described below based on pe(g) we can estimate the ratio
pe(size = k)/pe(size ≤ 5) by their relative frequencies and hence obtain an estimate of

Âp,k = 6φp,k
p̂e(size = k)
p̂e(size ≤ 5)

,

where p̂e(size = k) and p̂e(size ≤ 5) are the empirical relative frequencies.

The simulation uses the following MCMC sampling scheme. As in Section 4.1, we generate
the edge indicators one at a time conditional on the other edge indicators. Let gc = (V,Ec)
be the current graph with edge indicators given by {ekl : (k, l) ∈ Ec}. We select an edge
(i, j) at random. If g = (eij , ec−ij) corresponds to a decomposable graph of size ≤ k for
both eij = 0 and eij = 1 then we proceed, where we again use the legal edge addition
and deletion characterizations of Giudici and Green (1999) and Frydenberg and Lauritzen
(1989) respectively to test this. Otherwise we select a new edge. If we proceed, then we
propose a new graph gp = (1− ecij , e

c
−ij) and accept this graph with probability

min {1, pe(gp)/pe(gc)}

which is evaluated using (21).

We note that at each stage we can also re-estimate Ap,j , j = 6, · · · , k − 1.

6.2. Results

This section presents the estimates Âp,k for k = 0 · · · r and p = 8 and 34. We also provide
a general method to check on the quality of these estimates. We note that the prior

pe(g) ∝
{

1
Ap,size(g)

if 0 ≤ size(g) ≤ 5 or r − 2 ≤ size(g) ≤ r
1

Âp,size(g)
if 6 ≤ size(g) ≤ r − 3

should have pe(size = k) close to uniform and hence close to the target value of 1/(r+1), and
that an approximate lower bound for the standard error of the estimates of pe(size = k)
is

√
π(1 − π)/J , where π = 1/(r + 1) and J is the number of iterates used to compute

pe(size = k). Our simulations use a burnin period of 2,000 iterations and a sampling
period of N = 10, 000 iterations. Figure 2 plots the estimates Âp,k for p = 8 and the true
values A8,k, k = 0 · · · r on both an absolute and logarithmic scale. Figure 2 also plots the
estimates of pe(size = k) together with the target value 1/(r+1) and lower bounds for the
±3 standard error lines.

Figure 3 has the same interpretation as Figure 2 but is for p = 34. The true values of A34,k

are not plotted as they are mostly unknown.

For p = 9, · · · , 12 the totals Ap =
∑
j Ap,j are known, but not the Ap,j . As a further

check on results we compared our estimated values of Âp to Ap and found that we were
consistently within 1% of the truth.
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Fig. 2. Panel (a): Plot of true A8,k(·) and estimates Â8,k (open circles), k = 0, · · · r. Panel (b): Log
scale of plot (a). Panel (c): Plot of p̂e(size = k) together with their target value of 1/(r + 1) (middle
horizontal line) and ±3 approximate standard errors (outer horizontal lines).
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Fig. 3. Panel (a): Plot of estimates Â34,k k = 0, · · · r. Panel (b): Log scale of plot (a). Panel (c):
Plot of p̂e(size = k) together with their target value of 1/(r + 1) (middle horizontal line) and ±3
approximate standard errors (outer horizontal lines).

7. Comparsion to the Wong et al. (2003) covariance selection prior

This section compares the performance of the prior in our article to the covariance selection
prior of Wong et al. (2003), which does not assume that the graph of the covariance matrix
is decomposable. Based on the results in Section 5, we use the equicorrelated form of Φ
and the size based prior for the decomposable graphs.

The design of the simulation study is similar to that in Section 5. We use L1 as the loss
function, p = 17, two sample sizes n = 40 and n = 100, and four graphs for Ω: identity,
tridiagonal, 4-cycle and 17-cycle.

We refer to the decomposable prior as DCP and the nondecomposable prior of Wong et al.
(2003) as NDP . Figure 4 reports boxplots of the percentage increase in L1 of DCP over
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NDP for each iterate, i.e.

100(LDCP1 − LNDP1 )/LNDP1 .

Figure 4 shows that both priors perform similarly for decomposable graphs and nondecom-
posable graphs, for both n = 40 and n = 100. These results and others suggest that the
prior based on decomposable graphs performs similarly to that of Wong et al. (2003) when
the graphs are relatively sparse.
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Fig. 4. Percentage increase in L1 for DCP over NDP . The left panel is for n = 40 and the right is
for n = 100.

Next we report autocorrelation plots for the iterates of the elements of Ω, when p = 5 and
the graph is full for both DCP and NDP when n = 40. The simulation for DCP uses a
burnin of 50,000 iterations and a sampling of 50,000 iterations, and 500, 000 burnin and 1
million sampling iterations for NDP .

Figures 5 and Figure 6 are the autocorrelation plots for the DCP and NDP models for a
representative selection of Ωij . The figures show that the autocorrelations of the iterates of
the Ωij decay rapidly to zero for the DCP model, but are far more dependent in the NDP
model. This difference in dependence is due to the greater efficiency of the sampling scheme
in the decomposable case. Grey scale plots of the true inverse covariance Ω and posterior
mean estimates of Ω for the NDP estimator and the DCP estimator for the 17-cycle case
indicated that NDP and DCP performed similarly in the simulations. For brevity only the
nondecomposable 17-cycle is presented as it represents a case of high non-decomposability.
Figure 7 shows that even in this case, the grey scales are very similar.
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Ωij .
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Fig. 6. Autocorrelations of the iterates of the Ω ij in the NDP case for a representative selection of
Ωij .
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A. Proofs of results

Proof of Theorem 1
Roverato (2000) shows that if Σ ∼ HIW (g, δ,Φ) and Ω = Σ−1 then

p(Ω|g, δ,Φ) ∝ |Ω|(δ−2)/2 etr
(
−1
2
ΩΦ

)
(22)

The result then follows from (7) since

p(Ω|y, g, δ,Φ) ∝ p(y|Ω)p(Ω|g, δ,Φ)

∝ |Ω|(n−1)/2 etr
(
−1
2
ΩSy

)
|Ω|(δ−2)/2 etr

(
−1
2
ΩΦ

)
= |Ω|(n+δ−3)/2 etr

(
−1
2
Ω (Sy +Φ)

)
.

Note that the conjugate prior result for Ω does not require the graph g to be decomposable.

Proof of Theorem 2
First

p(Y |δ,Φ, g) = p(Y |Σ, δ,Φ, g)p(Σ|δ,Φ, g)
p(Σ|Y, δ,Φ, g) .

The result then follows from (2), (3), (7) and Theorem 1.

Proof of Theorem 3
From Equation (5.23), Lemma 5.5 of Lauritzen (1996)

Ω =
k∑
i=1

[
(ΣCiCi)

−1
]V

−
k∑
i=2

[
(ΣSiSi)

−1
]V

and hence

E (Ω|Y, δ,Φ, g) =
k∑
i=1

[
E

(
(ΣCiCi)

−1 |Y, δ,Φ, g
)]V

−
k∑
i=2

[
E

(
(ΣSiSi)

−1 |Y, δ,Φ, g
)]V

.

Now Σ|Y, δ,Φ, g ∼ HIW (δ,Φ∗, g∗), so from Dawid and Lauritzen (1993), if A is a complete
set in g then (ΣAA)

−1 |Y, δ,Φ, g ∼ Wishart (δ∗ + |A| − 1,Φ∗
AA). The result then follows

from the properties of the Wishart distribution.

Proof of Lemma 5

(a) For a nondecomposable graph to have 4 edges it must contain exactly one chordless
4-cycle and no other edges. There are

(
p
4

)
possible choices for the 4 vertices, and for

each choice of 4 vertices there are 3 different chordless 4-cycles.
(b) For a graph to be nondecomposable with

(
p
2

) − 2 edges it must contain exactly one 4
cycle and all other edges must be present. Then apply the proof of the above.

(c) We can partition the nondecomposable graphs with 5 edges into 2 sets: (a) those
with a chordless 5-cycle and no other edges, and (b) those with a chordless 4-cycle
and an extra edge. For case (a) there are

(
p
5

)
choices for the 5 vertices and for each

choice there are (5 − 1)!/2 = 12 different chordless 5-cycles. For case (b) there are(
p
4

)× 3 choices for the chordless 4-cycle, and for each choice of chordless 4-cycle there
are (

(
p
2

) − 6) choices for the extra vertex pair constituting the edge.
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B. HIW results for Bayesian analysis using MCMC

The following results derive an expression for (15) that can be evaluated efficiently. The
first theorem gives some necessary graph theory.

Let g = (V,E) be a decomposable graph with edge indicators {eij, i < j ≤ p}. Assume the
edge indicator eij = 1 for g, and that the graph g′ = (V,E′) is decomposable and has edge
set E′ as defined by indicators {e′ij = 0, e−ij}.

Theorem 6. Suppose that g and g′ are the decomposable graphs defined above. Suppose
that C1, . . . , Ck are the cliques of g ordered to form a perfect sequence and S2, . . . , Sk are
the corresponding separators. Then
(a) The edge (i, j) is contained in a single clique of g.
(b) If (i, j) ∈ Cq then either i /∈ Sq or j /∈ Sq.
(c) If j /∈ Sq and Cq1 = Cq\{j} and Cq2 = Cq\{i} then C1, . . ., Cq−1, Cq1 , Cq2 , Cq+1, . . .,
Ck is a perfect sequence of complete sets in g′ and has separators S2, . . ., Sq−1, Sq1 = Sq,
Sq2 = Cq\{i, j}, Sq+1, . . ., Sk.
(d) The sequence C1, . . ., Cq−1, Cq1 , Cq2 , Cq+1, . . ., Ck contains all the cliques of g′.

Proof. Part (a) is Theorem 1 of Frydenberg and Lauritzen (1989) .
Parts (b) and (c) follow from part (a) and Lemma 2.20 of Lauritzen (1996).
To show part (d), suppose that C∗ is a clique of g′. Then C∗ is complete in g, so C∗ ⊂ Cl
for some l ∈ {1, . . . , k}. If C∗ ⊂ Cq then part (b) implies that either i /∈ Sq or j /∈ Sq. So
either C∗ ⊂ Cq1 or C∗ ⊂ Cq2 . Hence C∗ is contained in at least one of C1, . . ., Cq−1, Cq1 ,
Cq2 , Cq+1, . . ., Ck. Part (c) shows that C1, . . ., Cq−1, Cq1 , Cq2 , Cq+1, . . ., Ck are complete
sets in g′ and the result follows.

The next lemma uses (4) and Theorem 6 to simplify (15).

Lemma 7. Suppose that g and g′ are the decomposable graphs defined above. Then, using
the notation of (12), and Theorem 6

h(g, δ,Φ)
h(g′, δ,Φ)

h(g′, δ∗,Φ∗)
h(g, δ∗,Φ∗)

=

∣∣∣ΦDD|Sq2

∣∣∣
(

δ+|Sq2 |+1
2

) ∣∣∣Φ∗
ii|Sq2

∣∣∣
(

δ∗+|Sq2 |
2

) ∣∣∣Φ∗
jj|Sq2

∣∣∣
(

δ∗+|Sq2 |
2

)

∣∣∣Φii|Sq2

∣∣∣
(

δ+|Sq2 |
2

) ∣∣∣Φjj|Sq2

∣∣∣
(

δ+|Sq2 |
2

) ∣∣∣Φ∗
DD|Sq2

∣∣∣
(

δ∗+|Sq2 |+1
2

) ×

Γ
(
δ+|Sq2 |

2

)
Γ

(
δ∗+|Sq2 |+1

2

)
Γ

(
δ+|Sq2 |+1

2

)
Γ

(
δ∗+|Sq2 |

2

) , (23)

where D = {i, j}, ΦDD|Sq2
= ΦDD−ΦDSq2

(
ΦSq2Sq2

)−1 ΦSq2D
, and Φii|Sq2

, Φjj|Sq2
, Φ∗

DD|Sq2
,

Φ∗
ii|Sq2

and Φ∗
jj|Sq2

are defined similarly.
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Proof. To obtain an expression for h(g′, δ,Φ) we require the following technical lemma
based on Lemma 2.13 of Lauritzen (1996).

Lemma 8. Let C̃1, . . ., C̃k̃ be a perfect sequence with separators S̃2, . . ., S̃k̃. Assume that
C̃t ⊂ C̃p for some t �= p and that p is minimal with this property for fixed t. Then
(a) If p < t then S̃t = C̃t and C̃1, . . ., C̃t−1, C̃t+1, . . ., C̃k̃ is a perfect sequence with
separators S̃2, . . ., S̃t−1, S̃t+1, . . ., S̃k̃
(b)If p > t then S̃p = C̃t and C̃1, . . ., C̃t−1, C̃p, C̃t+1, . . ., C̃p−1, C̃p+1, C̃k̃ is a perfect
sequence with separators S̃2, . . ., S̃t−1, S̃t, S̃t+1, . . ., S̃p−1, S̃p+1, S̃k̃

Proof of Lemma 8. See Lemma 2.13 of Lauritzen and its proof.
From Lemma 8, a perfect sequence of complete sets C̃1, . . ., C̃k̃ containing the cliques of g′

can be thinned by removing complete sets that are not cliques and reordering the sequence.
From Lemma 8, the right-hand side of (4) is invariant to this thinning process. Successive
application of the thinning process gives a perfect sequence consisting of the cliques of g′.

From (4), Theorem 6 and Lemma 8

h(g′, δ,Φ)

=

∏
i=1,...q−1,q1,q2,q+1,...,k

∣∣∣ΦCiCi

2

∣∣∣
(

δ+|Ci|−1
2

)
Γ|Ci|

(
δ+|Ci|−1

2

)−1


∏

i=2,...q−1,q1,q2,q+1,...,k

∣∣∣ΦSiSi

2

∣∣∣
(

δ+|Si|−1
2

)
Γ|Si|

(
δ+|Si|−1

2

)−1

 . (24)

Now consider the ratio h(g, δ,Φ)/h(g′, δ,Φ). Simplifying the expressions from (4) and (24)
gives

h(g, δ,Φ)
h(g′, δ,Φ)

=

∣∣ΦCqCq

∣∣( δ+|Sq2 |+1
2

) ∣∣ΦSqSq

∣∣( δ+|Sq2 |−1
2

)
Γ

(
δ+|Sq2 |

2

)
∣∣ΦCq1Cq1

∣∣( δ+|Sq2 |
2

) ∣∣ΦCq2Cq2

∣∣( δ+|Sq2 |
2

)
Γ

(
δ+|Sq2 |+1

2

)
2
√
π

. (25)

Substituting ∣∣ΦCqCq

∣∣ = ∣∣∣ΦDD|Sq2

∣∣∣ ∣∣ΦSq2

∣∣∣∣ΦCq1Cq1

∣∣ = ∣∣∣Φii|Sq2

∣∣∣ ∣∣ΦSq2

∣∣∣∣ΦCq2Cq2

∣∣ = ∣∣∣Φii|Sq2

∣∣∣ ∣∣ΦSq2

∣∣
into (25) gives

h(g, δ,Φ)
h(g′, δ,Φ)

=

∣∣∣ΦDD|Sq2

∣∣∣
(

δ+|Sq2 |+1
2

)
Γ

(
δ+|Sq2 |

2

)
∣∣∣Φii|Sq2

∣∣∣
(

δ+|Sq2 |
2

) ∣∣∣Φjj|Sq2

∣∣∣
(

δ+|Sq2 |
2

)
Γ

(
δ+|Sq2 |+1

2

)
2
√
π

.
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A similar expression can be derived for the ratio h(g, δ∗,Φ∗)/h(g′, δ∗,Φ∗) and the result
follows.

The following lemma gives an efficient method for evaluating the terms in (23) using
Cholesky decompositions.

Lemma 9. Using the notation of Theorem 6 and Lemma 7, suppose that the matrix ACqCq >
0 is partitioned as

ACqCq =
(

ASq2Sq2
ASq2D

ADSq2
ADD

)
and has Cholesky decomposition ACqCq = LL′ where

L =
(

LSq2Sq2
0

LDSq2
LDD

)
and

LDD =
(

lαα 0
lβα lββ

)
.

Then
(a) ADD|Sq2

= LDD (LDD)
′

(b)
∣∣∣ADD|Sq2

∣∣∣ = (lαα)
2 (lββ)

2

(c) Aαα|Sq2
= (lαα)

2

(d) Aββ|Sq2
= (lβα)

2 + (lββ)
2

Proof. The proof is straightforward and is omitted.

Equation (15) and parts (b)—(d) of Lemma 9 give an efficient expression for the conditional
distributions in Section 4. The main computational effort is in updating the Cholesky
decompositions of the matrices ΦCqCq and Φ∗

CqCq
whenever an edge is added or deleted.

From Lemma 9, these Cholesky decomposition must be done with the entries for the ith
and jth vertices in the lower right corner. Note that efficient Cholesky updating routines
using Givens rotations are available in Matlab and Fortran. Note also that the dimensions
of ΦCqCq and Φ∗

CqCq
depend on the cliques sizes and may be much smaller than p. Thus our

method has the local computational properties described in Giudici and Green (1999) and
will have similar computational cost to their method per iteration of the Gibbs sampler.
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