243 research outputs found

    Intraperitoneal administration of telomerase-specific oncolytic adenovirus sensitizes ovarian cancer cells to cisplatin and affects survival in a xenograft model with peritoneal dissemination

    Get PDF
    Despite tremendous development in chemotherapy for ovarian cancer over the past few decades, the prognosis of advanced cases with massive peritoneal dissemination is still unsatisfactory, and novel treatment modalities that can combine with chemotherapy are urgently needed. We recently developed virotherapy for solid tumors using telomerase-specific replication-selective adenoviruses (Telomelysin: OBP-301), in which the human telomerase reverse transcriptase (hTERT) gene promoter has been inserted to direct tumor-specific E1 gene expression. In this study, we investigated the anti-tumor effects of OBP-301, combined with cisplatin (CDDP), on ovarian cancer cells. In vitro treatment of SKOV3 cells with OBP-301 at a multiplicity of infection (MOI) of 0.01–100 induced significant cell death in a dose-dependent manner, with moderate cytotoxicity at an MOI of 1–10 and maximal cytotoxicity at an MOI of 100. In contrast, OBP-301 treatment of normal human cells showed no significant cell death at an MOI of 1–10 and exhibited modest cytotoxicity at an MOI of 100. The effects of low-dose CDDP at 0.5–1 μM, which induced only 20% cell death, were significantly augmented by combination with OBP-301 at an MOI of 1–10, finally achieving 40% cell death. Such enhancement of CDDP sensitivity was also observed in CDDP-resistant ovarian cancer cells. The combinatorial effects were further tested using a xenograft mouse model of SKOV3 with peritoneal dissemination. After intraperitoneal administration of OBP-301, we confirmed that injected OBP-301 fused with the green fluorescent protein (GFP) gene (OBP-401) was preferentially localized to peritoneal disseminations, as determined by fluorescence imaging. Treatment of mice with CDDP at low dose (0.5 mg kg–1) had modest effects, showing a 10% decrease in disseminations, whereas combination with intraperitoneal administration of OBP-301 at an MOI of 10 led to enhanced effects, achieving an approximately 80% decrease in disseminations. Kaplan–Meier analysis showed improved overall survival of mice treated with CDDP plus OBP-301 compared with CDDP alone. These findings support the therapeutic potential of intraperitoneal administration of OBP-301 to sensitize ovarian cancer cells to CDDP

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3β€²-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability

    TWIST1 a New Determinant of Epithelial to Mesenchymal Transition in EGFR Mutated Lung Adenocarcinoma

    Get PDF
    Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT). The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (nβ€Š=β€Š33) and showed that TWIST1 expression was linked to EGFR mutations (P<0.001), to low CDH1 expression (P<0.05) and low disease free survival (Pβ€Š=β€Š0.044). To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup

    Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori

    Get PDF
    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several β€œmoltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis

    Lysine-Specific Demethylase 1 (LSD1) Is Required for the Transcriptional Repression of the Telomerase Reverse Transcriptase (hTERT) Gene

    Get PDF
    BACKGROUND: Lysine-specific demethylase 1 (LSD1), catalysing demethylation of mono- and di-methylated histone H3-K4 or K9, exhibits diverse transcriptional activities by mediating chromatin reconfiguration. The telomerase reverse transcriptase (hTERT) gene, encoding an essential component for telomerase activity that is involved in cellular immortalization and transformation, is silent in most normal human cells while activated in up to 90% of human cancers. It remains to be defined how exactly the transcriptional activation of the hTERT gene occurs during the oncogenic process. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we determined the effect of LSD1 on hTERT transcription. In normal human fibroblasts with a tight hTERT repression, a pharmacological inhibition of LSD1 led to a weak hTERT expression, and a robust induction of hTERT mRNA was observed when LSD1 and histone deacetylases (HDACs) were both inhibited. Small interference RNA-mediated depletion of both LSD1 and CoREST, a co-repressor in HDAC-containing complexes, synergistically activated hTERT transcription. In cancer cells, inhibition of LSD1 activity or knocking-down of its expression led to significant increases in levels of hTERT mRNA and telomerase activity. Chromatin immunoprecipitation assay showed that LSD1 occupied the hTERT proximal promoter, and its depletion resulted in elevated di-methylation of histone H3-K4 accompanied by increased H3 acetylation locally in cancer cells. Moreover, during the differentiation of leukemic HL60 cells, the decreased hTERT expression was accompanied by the LSD1 recruitment to the hTERT promoter. CONCLUSIONS/SIGNIFICANCE: LSD1 represses hTERT transcription via demethylating H3-K4 in normal and cancerous cells, and together with HDACs, participates in the establishment of a stable repression state of the hTERT gene in normal or differentiated malignant cells. The findings contribute to better understandings of hTERT/telomerase regulation, which may be implicated in the development of therapeutic strategies for telomerase dysregulation-associated human diseases including cancers

    Sulforaphane Causes Epigenetic Repression of hTERT Expression in Human Breast Cancer Cell Lines

    Get PDF
    Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, is a common dietary component that has histone deacetylase inhibition activity and exciting potential in cancer prevention. The mechanisms by which SFN imparts its chemopreventive properties are of considerable interest and little is known of its preventive potential for breast cancer. expression facilitated the induction of cellular apoptosis in human breast cancer cells.Collectively, our results provide novel insights into SFN-mediated epigenetic down-regulation of telomerase in breast cancer prevention and may open new avenues for approaches to SFN-mediated cancer prevention

    Network Analysis of Differential Expression for the Identification of Disease-Causing Genes

    Get PDF
    Genetic studies (in particular linkage and association studies) identify chromosomal regions involved in a disease or phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for biological validation. Recently, computational methods to identify (prioritize) the most promising candidates within a region have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few confirmed disease genes, fragmentary understanding of the biological cascades involved). We seek to overcome this limitation by replacing knowledge about the biological process by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on four monogenic diseases and successfully prioritize the known disease causing genes
    • …
    corecore