118,362 research outputs found
Robust filtering with randomly varying sensor delay: The finite-horizon case
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we consider the robust filtering problem for discrete time-varying systems with delayed sensor measurement subject to norm-bounded parameter uncertainties. The delayed sensor measurement is assumed to be a linear function of a stochastic variable that satisfies the Bernoulli random binary distribution law. An upper bound for the actual covariance of the uncertain stochastic parameter system is derived and used for estimation variance constraints. Such an upper bound is then minimized over the filter parameters for all stochastic sensor delays and admissible deterministic uncertainties. It is shown that the desired filter can be obtained in terms of solutions to two discrete Riccati difference equations of a form suitable for recursive computation in online applications. An illustrative example is presented to show the applicability of the proposed method
Mobile robot localization using robust extended H-infinity filtering
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 Institution of Mechanical Engineers.In this paper, a novel methodology is provided for accurate localization of a mobile robot using autonomous navigation based on internal and external sensors. A new robust extended H∞ filter is developed to deal with the non-linear kinematic model of the robot and the non-linear distance measurements, together with process and measurement noises. The proposed filter relies on a two-step prediction-correction structure, which is similar to a Kalman filter. Simulations are provided to demonstrate the effectiveness of the proposed method.EPSRC, the Nuffield Foundation, and the Alexander von Humboldt Foundation
Robust H2 filtering for a class of systems with stochastic nonlinearities
Copyright [2006] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper addresses the robust H2 filtering problem for a class of uncertain discrete-time nonlinear stochastic systems. The nonlinearities described by statistical means in this paper comprise some well-studied classes of nonlinearities in the literature. A technique is developed to tackle the matrix trace terms resulting from the nonlinearities, and the well-known S-procedure technique is adopted to cope with the uncertainties. A unified framework is established to solve the addressed robust H2 filtering problem by using a linear matrix inequality approach. A numerical example is provided to illustrate the usefulness of the proposed method
A Frequency-Reconfigurable Monopole Antenna with Switchable Stubbed Ground Structure
A frequency-reconfigurable coplanar-waveguide (CPW) fed monopole antenna using switchable stubbed ground structure is presented. Four PIN diodes are employed in the stubs stretching from the ground to make the antenna reconfigurable in three operating modes: a single-band mode (2.4-2.9 GHz), a dual-band mode (2.4-2.9 GHz/5.09-5.47 GHz) and a triple-band mode (3.7-4.26 GHz/5.3-6.3 GHz/8.0-8.8 GHz). The monopole antenna is resonating at 2.4 GHz, while the stubs produce other operating frequency bands covering a number of wireless communication systems, including WLAN, WiMAX, C-band, and ITU. Furthermore, an optimized biasing network has been integrated into this antenna, which has little influence on the performance of the antenna. This paper presents, compares and discusses the simulated and measured results
Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene
From the perspective of bond relaxation and vibration, we have reconciled the
Raman shifts of graphene under the stimuli of the number-of-layer,
uni-axial-strain, pressure, and temperature in terms of the response of the
length and strength of the representative bond of the entire specimen to the
applied stimuli. Theoretical unification of the measurements clarifies that:
(i) the opposite trends of Raman shifts due to number-of-layer reduction
indicate that the G-peak shift is dominated by the vibration of a pair of atoms
while the D- and the 2D-peak shifts involves z-neighbor of a specific atom;
(ii) the tensile strain-induced phonon softening and phonon-band splitting
arise from the asymmetric response of the C3v bond geometry to the C2v
uni-axial bond elongation; (iii) the thermal-softening of the phonons
originates from bond expansion and weakening; and (iv) the pressure- stiffening
of the phonons results from bond compression and work hardening. Reproduction
of the measurements has led to quantitative information about the referential
frequencies from which the Raman frequencies shift, the length, energy, force
constant, Debye temperature, compressibility, elastic modulus of the C-C bond
in graphene, which is of instrumental importance to the understanding of the
unusual behavior of graphene
Orientation-dependent deformation mechanisms of bcc niobium nanoparticles
Nanoparticles usually exhibit pronounced anisotropic properties, and a close
insight into the atomic-scale deformation mechanisms is of great interest. In
present study, atomic simulations are conducted to analyze the compression of
bcc nanoparticles, and orientation-dependent features are addressed. It is
revealed that surface morphology under indenter predominantly governs the
initial elastic response. The loading curve follows the flat punch contact
model in [110] compression, while it obeys the Hertzian contact model in [111]
and [001] compressions. In plastic deformation regime, full dislocation gliding
is dominated in [110] compression, while deformation twinning is prominent in
[111] compression, and these two mechanisms coexist in [001] compression. Such
deformation mechanisms are distinct from those in bulk crystals under
nanoindentation and nanopillars under compression, and the major differences
are also illuminated. Our results provide an atomic perspective on the
mechanical behaviors of bcc nanoparticles and are helpful for the design of
nanoparticle-based components and systems.Comment: 21 pages, 11 figure
- …
