25,757 research outputs found
Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon
The magnetic rare earth element gadolinium (Gd) was doped into thin films of
amorphous carbon (hydrogenated \textit{a}-C:H, or hydrogen-free \textit{a}-C)
using magnetron co-sputtering. The Gd acted as a magnetic as well as an
electrical dopant, resulting in an enormous negative magnetoresistance below a
temperature (). Hydrogen was introduced to control the amorphous carbon
bonding structure. High-resolution electron microscopy, ion-beam analysis and
Raman spectroscopy were used to characterize the influence of Gd doping on the
\textit{a-}GdC(:H) film morphology, composition, density and
bonding. The films were largely amorphous and homogeneous up to =22.0 at.%.
As the Gd doping increased, the -bonded carbon atoms evolved from
carbon chains to 6-member graphitic rings. Incorporation of H opened up the
graphitic rings and stabilized a -rich carbon-chain random network. The
transport properties not only depended on Gd doping, but were also very
sensitive to the ordering. Magnetic properties, such as the spin-glass
freezing temperature and susceptibility, scaled with the Gd concentration.Comment: 9 figure
Compact and High Performance Dual-band Bandpass Filter Using Resonator-embedded Scheme for WLANs
A compact microstrip dual-band bandpass filter (DBBPF) with high selectivity and good suppression for wireless local area networks (WLANs) is proposed utilizing a novel embedded scheme resonator. Two passbands are produced by a pair of embedded half-wavelength meandered stepped-impedance resonator (MSIR) and a quadwavelength short stub loaded stepped-impedance resonator (SIR) separately. The resonator is fed by folded Tshaped capacitive source-load coupling microstrip feed line, and four transmission zeros are obtained at both sides of the bands to improve selectivity and suppression. Simultaneously, the size of the filter is extermely compact because embedding half-wavelength MSIR only changes the interior configuration of quad-wavelength SIR. To validate the design method, the designed filter is fabricated and measured. Both simulated and measured results indicate that good transmission property has been achieved
Field induced density wave in the heavy fermion compound CeRhIn5
Metals containing Ce often show strong electron correlations due to the
proximity of the 4f state to the Fermi energy, leading to strong coupling with
the conduction electrons. This coupling typically induces a variety of
competing ground states, including heavy-fermion metals, magnetism and
unconventional superconductivity. The d-wave superconductivity in CeTMIn5
(TM=Co, Rh, Ir) has attracted significant interest due to its qualitative
similarity to the cuprate high-Tc superconductors. Here, we show evidence for a
field induced phase-transition to a state akin to a density-wave (DW) in the
heavy fermion CeRhIn5, existing in proximity to its unconventional
superconductivity. The DW state is signaled by a hysteretic anomaly in the
in-plane resistivity accompanied by the appearance of non-linear electrical
transport at high magnetic fields (>27T), which are the distinctive
characteristics of density-wave states. The unusually large hysteresis enables
us to directly investigate the Fermi surface of a supercooled electronic system
and to clearly associate a Fermi surface reconstruction with the transition.
Key to our observation is the fabrication of single crystal microstructures,
which are found to be highly sensitive to "subtle" phase transitions involving
only small portions of the Fermi surface. Such subtle order might be a common
feature among correlated electron systems, and its clear observation adds a new
perspective on the similarly subtle CDW state in the cuprates.Comment: Accepted in Nature Communication
Computing Quasiconformal Maps on Riemann surfaces using Discrete Curvature Flow
Surface mapping plays an important role in geometric processing. They induce
both area and angular distortions. If the angular distortion is bounded, the
mapping is called a {\it quasi-conformal} map. Many surface maps in our
physical world are quasi-conformal. The angular distortion of a quasi-conformal
map can be represented by Beltrami differentials. According to quasi-conformal
Teichm\"uller theory, there is an 1-1 correspondence between the set of
Beltrami differentials and the set of quasi-conformal surface maps. Therefore,
every quasi-conformal surface map can be fully determined by the Beltrami
differential and can be reconstructed by solving the so-called Beltrami
equation.
In this work, we propose an effective method to solve the Beltrami equation
on general Riemann surfaces. The solution is a quasi-conformal map associated
with the prescribed Beltrami differential. We firstly formulate a discrete
analog of quasi-conformal maps on triangular meshes. Then, we propose an
algorithm to compute discrete quasi-conformal maps. The main strategy is to
define a discrete auxiliary metric of the source surface, such that the
original quasi-conformal map becomes conformal under the newly defined discrete
metric. The associated map can then be obtained by using the discrete Yamabe
flow method. Numerically, the discrete quasi-conformal map converges to the
continuous real solution as the mesh size approaches to 0. We tested our
algorithm on surfaces scanned from real life with different topologies.
Experimental results demonstrate the generality and accuracy of our auxiliary
metric method
Study of the 12C+12C fusion reactions near the Gamow energy
The fusion reactions 12C(12C,a)20Ne and 12C(12C,p)23Na have been studied from
E = 2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultra-low
hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new
resonances at E <= 3.0 MeV, in particular a strong resonance at E = 2.14 MeV,
which lies at the high-energy tail of the Gamow peak. The resonance increases
the present non-resonant reaction rate of the alpha channel by a factor of 5
near T = 8x10^8 K. Due to the resonance structure, extrapolation to the Gamow
energy E_G = 1.5 MeV is quite uncertain. An experimental approach based on an
underground accelerator placed in a salt mine in combination with a high
efficiency detection setup could provide data over the full E_G energy range.Comment: 4 Pages, 4 figures, accepted for publication in Phys. Rev. Let
Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations
We have performed systematic first-principles calculations on di-carbide,
-nitride, -oxide and -boride of platinum and osmium with the fluorite
structure. It is found that only PtN, OsN and OsO are
mechanically stable. In particular OsN has the highest bulk modulus of
360.7 GPa. Both the band structure and density of states show that the new
phase of OsN is metallic. The high bulk modulus is owing to the strong
covalent bonding between Os 5\textit{d} and N 2\textit{p} states and the dense
packed fluorite structure.Comment: Phys. Rev. B 74,125118 (2006
Quantum asymmetric cryptography with symmetric keys
Based on quantum encryption, we present a new idea for quantum public-key
cryptography (QPKC) and construct a whole theoretical framework of a QPKC
system. We show that the quantum-mechanical nature renders it feasible and
reasonable to use symmetric keys in such a scheme, which is quite different
from that in conventional public-key cryptography. The security of our scheme
is analyzed and some features are discussed. Furthermore, the state-estimation
attack to a prior QPKC scheme is demonstrated.Comment: 8 pages, 1 figure, Revtex
Delocalization and conductance quantization in one-dimensional systems
We investigate the delocalization and conductance quantization in finite
one-dimensional chains with only off-diagonal disorder coupled to leads. It is
shown that the appearence of delocalized states at the middle of the band under
correlated disorder is strongly dependent upon the even-odd parity of the
number of sites in the system. In samples with inversion symmetry the
conductance equals for odd samples, and is smaller for even parity.
This result suggests that this even-odd behaviour found previously in the
presence of electron correlations may be unrelated to charging effects in the
sample.Comment: submitted to PR
Magnetic-field induced resistivity minimum with in-plane linear magnetoresistance of the Fermi liquid in SrTiO3-x single crystals
We report novel magnetotransport properties of the low temperature Fermi
liquid in SrTiO3-x single crystals. The classical limit dominates the
magnetotransport properties for a magnetic field perpendicular to the sample
surface and consequently a magnetic-field induced resistivity minimum emerges.
While for the field applied in plane and normal to the current, the linear
magnetoresistance (MR) starting from small fields (< 0.5 T) appears. The large
anisotropy in the transverse MRs reveals the strong surface interlayer
scattering due to the large gradient of oxygen vacancy concentration from the
surface to the interior of SrTiO3-x single crystals. Moreover, the linear MR in
our case was likely due to the inhomogeneity of oxygen vacancies and oxygen
vacancy clusters, which could provide experimental evidences for the unusual
quantum linear MR proposed by Abrikosov [A. A. Abrikosov, Phys. Rev. B 58, 2788
(1998)].Comment: 5 pages, 4 figure
- …
