22,000 research outputs found
Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon
The magnetic rare earth element gadolinium (Gd) was doped into thin films of
amorphous carbon (hydrogenated \textit{a}-C:H, or hydrogen-free \textit{a}-C)
using magnetron co-sputtering. The Gd acted as a magnetic as well as an
electrical dopant, resulting in an enormous negative magnetoresistance below a
temperature (). Hydrogen was introduced to control the amorphous carbon
bonding structure. High-resolution electron microscopy, ion-beam analysis and
Raman spectroscopy were used to characterize the influence of Gd doping on the
\textit{a-}GdC(:H) film morphology, composition, density and
bonding. The films were largely amorphous and homogeneous up to =22.0 at.%.
As the Gd doping increased, the -bonded carbon atoms evolved from
carbon chains to 6-member graphitic rings. Incorporation of H opened up the
graphitic rings and stabilized a -rich carbon-chain random network. The
transport properties not only depended on Gd doping, but were also very
sensitive to the ordering. Magnetic properties, such as the spin-glass
freezing temperature and susceptibility, scaled with the Gd concentration.Comment: 9 figure
Compact and High Performance Dual-band Bandpass Filter Using Resonator-embedded Scheme for WLANs
A compact microstrip dual-band bandpass filter (DBBPF) with high selectivity and good suppression for wireless local area networks (WLANs) is proposed utilizing a novel embedded scheme resonator. Two passbands are produced by a pair of embedded half-wavelength meandered stepped-impedance resonator (MSIR) and a quadwavelength short stub loaded stepped-impedance resonator (SIR) separately. The resonator is fed by folded Tshaped capacitive source-load coupling microstrip feed line, and four transmission zeros are obtained at both sides of the bands to improve selectivity and suppression. Simultaneously, the size of the filter is extermely compact because embedding half-wavelength MSIR only changes the interior configuration of quad-wavelength SIR. To validate the design method, the designed filter is fabricated and measured. Both simulated and measured results indicate that good transmission property has been achieved
Quantum asymmetric cryptography with symmetric keys
Based on quantum encryption, we present a new idea for quantum public-key
cryptography (QPKC) and construct a whole theoretical framework of a QPKC
system. We show that the quantum-mechanical nature renders it feasible and
reasonable to use symmetric keys in such a scheme, which is quite different
from that in conventional public-key cryptography. The security of our scheme
is analyzed and some features are discussed. Furthermore, the state-estimation
attack to a prior QPKC scheme is demonstrated.Comment: 8 pages, 1 figure, Revtex
Vector quantization for efficient coding of upper subbands
This paper examines the application of vector quantization (VQ) to exploit both intra-band and inter-band redundancy in subband coding. The focus here is on the exploitation of inter-band dependency. It is shown that VQ is particularly suitable and effective for coding the upper subbands. Three subband decomposition-based VQ coding schemes are proposed here to exploit the inter-band dependency by making full use of the extra flexibility of VQ approach over scalar quantization. A quadtree-based variable rate VQ (VRVQ) scheme which takes full advantage of the intra-band and inter-band redundancy is first proposed. Then, a more easily implementable alternative based on an efficient block-based edge estimation technique is employed to overcome the implementational barriers of the first scheme. Finally, a predictive VQ scheme formulated in the context of finite state VQ is proposed to further exploit the dependency among different subbands. A VRVQ scheme proposed elsewhere is extended to provide an efficient bit allocation procedure. Simulation results show that these three hybrid techniques have advantages, in terms of peak signal-to-noise ratio (PSNR) and complexity, over other existing subband-VQ approaches
Field induced density wave in the heavy fermion compound CeRhIn5
Metals containing Ce often show strong electron correlations due to the
proximity of the 4f state to the Fermi energy, leading to strong coupling with
the conduction electrons. This coupling typically induces a variety of
competing ground states, including heavy-fermion metals, magnetism and
unconventional superconductivity. The d-wave superconductivity in CeTMIn5
(TM=Co, Rh, Ir) has attracted significant interest due to its qualitative
similarity to the cuprate high-Tc superconductors. Here, we show evidence for a
field induced phase-transition to a state akin to a density-wave (DW) in the
heavy fermion CeRhIn5, existing in proximity to its unconventional
superconductivity. The DW state is signaled by a hysteretic anomaly in the
in-plane resistivity accompanied by the appearance of non-linear electrical
transport at high magnetic fields (>27T), which are the distinctive
characteristics of density-wave states. The unusually large hysteresis enables
us to directly investigate the Fermi surface of a supercooled electronic system
and to clearly associate a Fermi surface reconstruction with the transition.
Key to our observation is the fabrication of single crystal microstructures,
which are found to be highly sensitive to "subtle" phase transitions involving
only small portions of the Fermi surface. Such subtle order might be a common
feature among correlated electron systems, and its clear observation adds a new
perspective on the similarly subtle CDW state in the cuprates.Comment: Accepted in Nature Communication
Data-driven model predictive control for power demand management and fast demand response of commercial buildings using support vector regression
Demand response (DR) of commercial buildings by directly shutting down part of operating chillers could provide an immediate power reduction for power grids. In this special fast DR event, effective control needs to guarantee expected power reduction and ensure an acceptable indoor environment. This study, therefore, developed a data-driven model predictive control (MPC) using support vector regression (SVR) for fast DR events. According to the characteristics of fast DR events, the optimized hyperparameters of SVR and shortened searching range of genetic algorithm are used to improve the control performance. Meanwhile, a comprehensive comparison with RC-based MPC is conducted based on three scenarios of power demand controls. Test results show that the proposed SVR-based MPC could fulfill the control objectives of power demand and indoor temperature simultaneously. Compared with RC-based MPC, the SVR-based MPC could alleviate the time/labor cost of model development without sacrificing the control performance of fast DR events
Magnetic-field induced resistivity minimum with in-plane linear magnetoresistance of the Fermi liquid in SrTiO3-x single crystals
We report novel magnetotransport properties of the low temperature Fermi
liquid in SrTiO3-x single crystals. The classical limit dominates the
magnetotransport properties for a magnetic field perpendicular to the sample
surface and consequently a magnetic-field induced resistivity minimum emerges.
While for the field applied in plane and normal to the current, the linear
magnetoresistance (MR) starting from small fields (< 0.5 T) appears. The large
anisotropy in the transverse MRs reveals the strong surface interlayer
scattering due to the large gradient of oxygen vacancy concentration from the
surface to the interior of SrTiO3-x single crystals. Moreover, the linear MR in
our case was likely due to the inhomogeneity of oxygen vacancies and oxygen
vacancy clusters, which could provide experimental evidences for the unusual
quantum linear MR proposed by Abrikosov [A. A. Abrikosov, Phys. Rev. B 58, 2788
(1998)].Comment: 5 pages, 4 figure
Local unitary versus local Clifford equivalence of stabilizer and graph states
The equivalence of stabilizer states under local transformations is of
fundamental interest in understanding properties and uses of entanglement. Two
stabilizer states are equivalent under the usual stochastic local operations
and classical communication criterion if and only if they are equivalent under
local unitary (LU) operations. More surprisingly, under certain conditions, two
LU equivalent stabilizer states are also equivalent under local Clifford (LC)
operations, as was shown by Van den Nest et al. [Phys. Rev. \textbf{A71},
062323]. Here, we broaden the class of stabilizer states for which LU
equivalence implies LC equivalence () to include all
stabilizer states represented by graphs with neither cycles of length 3 nor 4.
To compare our result with Van den Nest et al.'s, we show that any stabilizer
state of distance is beyond their criterion. We then further prove
that holds for a more general class of stabilizer states
of . We also explicitly construct graphs representing
stabilizer states which are beyond their criterion: we identify all 58 graphs
with up to 11 vertices and construct graphs with () vertices
using quantum error correcting codes which have non-Clifford transversal gates.Comment: Revised version according to referee's comments. To appear in
Physical Review
- …