132,951 research outputs found
Superradiance in spin- particles: Effects of multiple levels
We study the superradiance dynamics in a dense system of atoms each of which
can be generally a spin- particle with an arbitrary half-integer. We
generalize Dicke's superradiance point of view to multiple-level systems, and
compare the results based on a novel approach we have developed in {[}Yelin
\textit{et al.}, arXiv:quant-ph/0509184{]}. Using this formalism we derive an
effective two-body description that shows cooperative and collective effects
for spin- particles, taking into account the coherence of transitions
between different atomic levels. We find that the superradiance, which is
well-known as a many-body phenomenon, can also be modified by multiple level
effects. We also discuss the feasibility and propose that our approach can be
applied to polar molecules, for their vibrational states have multi-level
structure which is partially harmonic.Comment: 11 pages, 7 figure
Extended Hubbard model on a C molecule
The electronic correlations on a C molecule, as described by an
extended Hubbard Hamiltonian with a nearest neighbor Coulomb interaction of
strength , are studied using quantum Monte Carlo and exact diagonalization
methods. For electron doped C, it is known that pair-binding arising
from a purely electronic mechanism is absent within the standard Hubbard model
(V=0). Here we show that this is also the case for hole doping for and that, for both electron and hole doping, the effect of a non-zero is
to work against pair-binding. We also study the magnetic properties of the
neutral molecule, and find transitions between spin singlet and triplet ground
states for either fixed or values. In addition, spin, charge and
pairing correlation functions on C are computed. The spin-spin and
charge-charge correlations are very short-range, although a weak enhancement in
the pairing correlation is observed for a distance equal to the molecular
diameter.Comment: 9 pages, 8 figures, 4 table
Creep fatigue life prediction for engine hot section materials (ISOTROPIC)
The specific activities summarized include: verification experiments (base program); thermomechanical cycling model; multiaxial stress state model; cumulative loading model; screening of potential environmental and protective coating models; and environmental attack model
Surfactant-Mediated Epitaxial Growth of Single-Layer Graphene in an Unconventional Orientation on SiC
We report the use of a surfactant molecule during the epitaxy of graphene on
SiC(0001) that leads to the growth in an unconventional orientation, namely
rotation with respect to the SiC lattice. It yields a very
high-quality single-layer graphene with a uniform orientation with respect to
the substrate, on the wafer scale. We find an increased quality and homogeneity
compared to the approach based on the use of a pre-oriented template to induce
the unconventional orientation. Using spot profile analysis low energy electron
diffraction, angle-resolved photoelectron spectroscopy, and the normal
incidence x-ray standing wave technique, we assess the crystalline quality and
coverage of the graphene layer. Combined with the presence of a
covalently-bound graphene layer in the conventional orientation underneath, our
surfactant-mediated growth offers an ideal platform to prepare epitaxial
twisted bilayer graphene via intercalation.Comment: 7 pages, 3 figure
Interaction of Close-in Planets with the Magnetosphere of their Host Stars I: Diffusion, Ohmic Dissipation of Time Dependent Field, Planetary Inflation, and Mass Loss
The unanticipated discovery of the first close-in planet around 51 Peg has
rekindled the notion that shortly after their formation outside the snow line,
some planets may have migrated to the proximity of their host stars because of
their tidal interaction with their nascent disks. If these planets indeed
migrated to their present-day location, their survival would require a halting
mechanism in the proximity of their host stars. Most T Tauri stars have strong
magnetic fields which can clear out a cavity in the innermost regions of their
circumstellar disks and impose magnetic induction on the nearby young planets.
Here we consider the possibility that a magnetic coupling between young stars
and planets could quench the planet's orbital evolution. After a brief
discussion of the complexity of the full problem, we focus our discussion on
evaluating the permeation and ohmic dissipation of the time dependent component
of the stellar magnetic field in the planet's interior. Adopting a model first
introduced by C. G. Campbell for interacting binary stars, we determine the
modulation of the planetary response to the tilted magnetic field of a
non-synchronously spinning star. We first compute the conductivity in the young
planets, which indicates that the stellar field can penetrate well into the
planet's envelope in a synodic period. For various orbital configurations, we
show that the energy dissipation rate inside the planet is sufficient to induce
short-period planets to inflate. This process results in mass loss via Roche
lobe overflow and in the halting of the planet's orbital migration.Comment: 47 pages, 12 figure
Semimetalic graphene in a modulated electric potential
The -electronic structure of graphene in the presence of a modulated
electric potential is investigated by the tight-binding model. The low-energy
electronic properties are strongly affected by the period and field strength.
Such a field could modify the energy dispersions, destroy state degeneracy, and
induce band-edge states. It should be noted that a modulated electric potential
could make semiconducting graphene semimetallic, and that the onset period of
such a transition relies on the field strength. There exist infinite
Fermi-momentum states in sharply contrast with two crossing points (Dirac
points) for graphene without external fields. The finite density of states
(DOS) at the Fermi level means that there are free carriers, and, at the same
time, the low DOS spectrum exhibits many prominent peaks, mainly owing to the
band-edge states.Comment: 12pages, 5 figure
- …
