220,261 research outputs found
Experimental Implications for a Linear Collider of the SUSY Dark Matter Scenario
This paper presents the detection issues for the lightest slepton
\tilde{\tau}_1 at a future e^+e^- TeV collider given the dark matter
constraints set on the SUSY mass spectrum by the WMAP results. It intends to
illustrate the importance of an optimal detection of energetic electrons in the
very forward region for an efficient rejection of the
\gamma\gamma background. The TESLA parameters have been used in the case of
head-on collisions and in the case of a 10, mrad half crossing angle.Comment: 24 pages, 13 figures, Work presented at the International Conference
on Linear Colliders (LCWS04), 19-23 April 2004, Le Carre des Sciences, Paris,
Franc
Mechanical performance of auxetic polyurethane foam for antivibration glove applications
In this study the static and dynamic characteristics of conventional open cell
polyurethane (PU), of auxetic (negative Poissonâs ratio) and of iso-density foams
were analysed. The specimens were produced from conventional gray open-cells
polyurethane foam with 30-35 pores/inch and 0.0027 g/cm3 density, by means of
process which has been previously defined by the authors. Poissonâs ratio
measurements were performed under quasi-static conditions using an MTS 858 servohydraulic
test machine and a video image acquisition system. For the auxetic foams
the results suggested similar behaviour to that previously reported in the literature,
with significant increases in stiffness during compressive loading, and a significant
dependence of the Poissonâs ratio on the applied strain. Transmissibility tests,
performed in accordance with the ISO 13753 procedure for antivibration glove
materials, suggested a strong dependence of the transmissibility on the foam
manufacturing parameters. Within the frequency range from 10 to 31.5 Hz the
transmissibility was found to be greater than 1, while it was less than 1 at all
frequencies greater than 31.5 Hz. The transmissibility results were similar to the mean
values for 80 resilient materials tested by Koton et. al., but were higher than the five
best materials (not all polymeric) identified by the same researchers. In this study it
has been suggested that the resilient behaviour of glove isolation materials should also
be evaluated in terms of the indentation characteristics. A simple, linear elastic, Finite
Element simulation was therefore performed, and the indentation results suggested
that auxetic foams offer a significant decrease in compressive stresses with respect to
conventional PU foams
Is perpendicular magnetic anisotropy essential to all-optical ultrafast spin reversal in ferromagnets?
All-optical spin reversal presents a new opportunity for spin manipulations,
free of a magnetic field. Most of all-optical-spin-reversal ferromagnets are
found to have a perpendicular magnetic anisotropy (PMA), but it has been
unknown whether PMA is necessary for the spin reversal. Here we theoretically
investigate magnetic thin films with either PMA or in-plane magnetic anisotropy
(IMA). Our results show that the spin reversal in IMA systems is possible, but
only with a longer laser pulse and within a narrow laser parameter region. The
spin reversal does not show a strong helicity dependence where the left- and
right-circularly polarized light lead to the identical results. By contrast,
the spin reversal in PMA systems is robust, provided both the spin angular
momentum and laser field are strong enough while the magnetic anisotropy itself
is not too strong. This explains why experimentally the majority of all-optical
spin-reversal samples are found to have strong PMA and why spins in Fe
nanoparticles only cant out of plane. It is the laser-induced spin-orbit torque
that plays a key role in the spin reversal. Surprisingly, the same spin-orbit
torque results in laser-induced spin rectification in spin-mixed configuration,
a prediction that can be tested experimentally. Our results clearly point out
that PMA is essential to the spin reversal, though there is an opportunity for
in-plane spin reversal.Comment: 20 pages, 4 figures and one tabl
Macroscopic tunneling of a membrane in an optomechanical double-well potential
The macroscopic tunneling of an optomechanical membrane is considered. A
cavity mode which couples quadratically to the membranes position can create
highly tunable adiabatic double-well potentials, which together with the high
Q-factors of such membranes render the observation of macroscopic tunneling
possible. A suitable, pulsed measurement scheme using a linearly coupled mode
of the cavity for the verification of the effect is studied.Comment: 5 pages, 5 figure
Switching ferromagnetic spins by an ultrafast laser pulse: Emergence of giant optical spin-orbit torque
Faster magnetic recording technology is indispensable to massive data storage
and big data sciences. {All-optical spin switching offers a possible solution},
but at present it is limited to a handful of expensive and complex rare-earth
ferrimagnets. The spin switching in more abundant ferromagnets may
significantly expand the scope of all-optical spin switching. Here by studying
40,000 ferromagnetic spins, we show that it is the optical spin-orbit torque
that determines the course of spin switching in both ferromagnets and
ferrimagnets. Spin switching occurs only if the effective spin angular momentum
of each constituent in an alloy exceeds a critical value. Because of the strong
exchange coupling, the spin switches much faster in ferromagnets than
weakly-coupled ferrimagnets. This establishes a paradigm for all-optical spin
switching. The resultant magnetic field (65 T) is so big that it will
significantly reduce high current in spintronics, thus representing the
beginning of photospintronics.Comment: 12 page2, 6 figures. Accepted to Europhysics Letters (2016). Extended
version with the supplementary information. Contribution from Indiana State
University,Europhysics Letters (2016
Physics of the Pseudogap State: Spin-Charge Locking
The properties of the pseudogap phase above Tc of the high-Tc cuprate
superconductors are described by showing that the Anderson-Nambu SU(2) spinors
of an RVB spin gap 'lock' to those of the electron charge system because of the
resulting improvement of kinetic energy. This enormously extends the range of
the vortex liquid state in these materials. As a result it is not clear that
the spinons are ever truly deconfined. A heuristic description of the
electrodynamics of this pseudogap-vortex liquid state is proposed.Comment: Submitted to Phys Rev Letter
Evaluation of overlaps between arbitrary Fermionic quasiparticle vacua
We derive an expression that allows for the unambiguous evaluation of the
overlap between two arbitrary quasiparticle vacua, including its sign. Our
expression is based on the Pfaffian of a skew-symmetric matrix, extending the
formula recently proposed by [L. M. Robledo, Phys. Rev. C 79, 021302(R) (2009)]
to the most general case, including the one of the overlap between two
different blocked n-quasiparticle states for either even or odd systems. The
powerfulness of the method is illustrated for a few typical matrix elements
that appear in realistic angular-momentum-restored Generator-Coordinate Method
calculations when breaking time-reversal invariance and using the full model
space of occupied single-particle states.Comment: 10 pages, 3 figure
Magnetic rotations in 198Pb and 199Pb within covariant density functional theory
Well-known examples of shears bands in the nuclei 198Pb and 199Pb are
investigated within tilted axis cranking relativistic mean-field theory. Energy
spectra, the relation between spin and rotational frequency, deformation
parameters and reduced and transition probabilities are calculated.
The results are in good agreement with available data and with calculations
based on the phenomenological pairing plus-quadrupole-quadrupole tilted-axis
cranking model. It is shown that covariant density functional theory provides a
successful microscopic and fully self-consistent description of magnetic
rotation in the Pb region showing the characteristic properties as the shears
mechanism and relatively large B(M1) transitions decreasing with increasing
spin.Comment: 22 pages, 8 figure
- âŠ