In this study the static and dynamic characteristics of conventional open cell
polyurethane (PU), of auxetic (negative Poisson’s ratio) and of iso-density foams
were analysed. The specimens were produced from conventional gray open-cells
polyurethane foam with 30-35 pores/inch and 0.0027 g/cm3 density, by means of
process which has been previously defined by the authors. Poisson’s ratio
measurements were performed under quasi-static conditions using an MTS 858 servohydraulic
test machine and a video image acquisition system. For the auxetic foams
the results suggested similar behaviour to that previously reported in the literature,
with significant increases in stiffness during compressive loading, and a significant
dependence of the Poisson’s ratio on the applied strain. Transmissibility tests,
performed in accordance with the ISO 13753 procedure for antivibration glove
materials, suggested a strong dependence of the transmissibility on the foam
manufacturing parameters. Within the frequency range from 10 to 31.5 Hz the
transmissibility was found to be greater than 1, while it was less than 1 at all
frequencies greater than 31.5 Hz. The transmissibility results were similar to the mean
values for 80 resilient materials tested by Koton et. al., but were higher than the five
best materials (not all polymeric) identified by the same researchers. In this study it
has been suggested that the resilient behaviour of glove isolation materials should also
be evaluated in terms of the indentation characteristics. A simple, linear elastic, Finite
Element simulation was therefore performed, and the indentation results suggested
that auxetic foams offer a significant decrease in compressive stresses with respect to
conventional PU foams